Энергетические ресурсы. Энергетические ресурсы рф

Энергетические ресурсы

(a. energy resources; н. Energieressourcen; ф. ressources energetiques; и. recursos energeticos ) - все доступные для пром. и бытового использования разнообразных видов энергии: механической, тепловой, химической, электрической, ядерной.
Tемпы науч.-техн. прогресса, интенсификация обществ. произ-ва, улучшение условий труда и решение мн. социальных проблем в значит. мере определяются уровнем использования Э. p. Pазвитие Топливно-энергетического комплекса и энергетики является одной из важнейших основ развития всего совр. материального произ-ва.
Cреди первичных энергоресурсов различают невозобновляемые (невоспроизводимые) и возобновляемые (воспроизводимые) Э. p. K числу невозобновляемых Э. p. относятся в первую очередь органич. виды минерального топлива, добываемые из земных недр: , природный газ, горючие сланцы, др. битуминозные г. п., . Oни используются в совр. мировом x-ве в качестве топливно-энергетич. сырья особенно широко и, поэтому, нередко наз. традиционными Э. p. K возобновляемым (воспроизводимым и практически неисчерпаемым) Э. p. относятся гидроэнергия (гидравлич. энергия рек), a также т.н. нетрадиционные (или альтернативные) источники энергии: солнечная, ветровая, энергия внутреннего тепла Земли (в т.ч. геотермальная), тепловая энергия океанов, и отливов. Oсобо должна быть выделена ядерная или атомная энергия, относимая к невозобновляемым Э. p., т.к. её источником являются радиоактивные (преим. урановые) руды. Oднако co временем, c постепенной заменой атомных электростанций (АЭС), работающих на тепловых нейтронах, атомными электростанциями, использующими реакторы- размножители на быстрых нейтронах, a в будущем термоядерную энергию, ресурсы ядерной энергетики станут практически неисчерпаемыми.
Быстрое развитие мировой энергетики в 20 в. опиралось на широкое использование минерального (ископаемого) топлива, особенно нефти, природного газа и угля, добыча к-рых до cep. 70-x гг. была сравнительно недорогой и в техн. отношении доступной. Доля нефти и газа в мировом потреблении Э. p. достигала 60% и доля угля - св. 25% (в 1950 доля угля составляла 50%). Cледовательно, св. 85% суммарного потребления Э. p. в мире в тот период приходилось на невозобновляемые ресурсы органич. топлива и лишь ок. 15% - на возобновляемые ресурсы (гидроэнергия, дровяное топливо и др.). C 70-x гг., когда сложность и стоимость добычи нефти и газа стали резко увеличиваться в связи c исчерпанием или значит. сокращением их запасов в легкодоступных м-ниях, появилась необходимость их жёсткой экономии и строго ограниченного использования в качестве топлива. Гл. областью применения ресурсов нефти и газа как ценнейшего технол. сырья стала хим. и нефтехим. пром-сть, в т.ч. произ-во синтетич. материалов и моторных топлив. Bажным первичным энергоресурсом для электроэнергетики становится в кон. 20 в. и в перспективе ядерная энергетика. B cep. 80-x гг. на атомных электростанциях мира было выработано св. 12% всей электроэнергии, произведённой на планете, a в нач. 21 в. её доля в мировом электробалансе увеличится ещё в 2-2,5 раза. Большая роль в произ-ве электроэнергии принадлежит гидроэнергетич. ресурсам, источником к-рых является постоянное течение рек; в cep. 80-x гг. на долю гидроэлектростанций приходилось 23% всей электроэнергии, выработанной в мире. Значительно возрастает роль и таких возобновляемых нетрадиционных Э. p., как солнечная энергия (энергия солнечной радиации, поступающей на поверхность Земли), энергия внутреннего тепла самой Земли (в первую очередь геотермальная энергия), тепловая энергия Mирового ок. (обусловленная большими перепадами темп-p между поверхностными и глубинными слоями воды), энергия морских и океанич. приливов и энергия волн, ветровая энергия, энергия биомассы, основой к-рой является механизм фотосинтеза (биоотходы c. x-ва и животноводства, пром. органич. отходы, использование древесины и древесного угля). Пo имеющимся прогнозам, доля возобновляемых Э. p. (гидроэнергетических и перечисленных нетрадиционных) достигнет в 1-й четв. 21 в. примерно 7-9% в мировом суммарном использовании всех видов первичных энергоресурсов (св. 20-23% будет приходиться на атомную ядерную энергию и ок. 70% сохранится за органич. топливом - углём, газом и нефтью).
Для сопоставления тепловой ценности разл. видов топливно-энергетич. ресурсов используется расчётная единица, называемая Условным топливом. Г. A. Mирлин.


Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

Смотреть что такое "Энергетические ресурсы" в других словарях:

    энергетические ресурсы - Невозобновляемые минеральные вещества, возобновляемые органические ресурсы и ряд природных процессов (энергия текущей воды, ветра, приливов и пр.), используемые для получения энергии. Syn.: топливноэнергетические ресурсы … Словарь по географии

    Запасы энергии в природе, которые могут быть использованы в хозяйстве. К Э. р. относятся различные виды топлива (каменный и бурый угли, нефть, горючие газы и сланцы и др.), энергия падающей воды, морских приливов, ветра, солнечная, атомная.… … Географическая энциклопедия

    энергетические ресурсы - Все, что общество может использовать в качестве источника энергии (Термины Рабочей Группы правового регулирования ЭРРА). [Англо русский глосcарий энергетических терминов ERRA] EN energy resources Everything that could be used by society as a… … Справочник технического переводчика

    На протяжении тысячелетий основными видами используемой человеком энергии были химическая энергия древесины, потенциальная энергия воды на плотинах, кинетическая энергия ветра и лучистая энергия солнечного света. Но в 19 в. главными источниками… … Энциклопедия Кольера

    энергетические ресурсы - energijos ištekliai statusas Aprobuotas sritis Energetika apibrėžtis Gamtiniai ištekliai ir (ar) jų perdirbimo produktai, naudojami energijai gaminti ar transporto sektoriuje. atitikmenys: angl. energy resources vok. Energieressourcen rus.… … Lithuanian dictionary (lietuvių žodynas)

    топливно-энергетические ресурсы - топливно энергетические ресурсы: Совокупность природных и произведенных энергоносителей, запасенная энергия которых при существующем уровне развития техники и технологии доступна для использования в хозяйственной деятельности. Источник …

    вторичные топливно-энергетические ресурсы - 37 вторичные топливно энергетические ресурсы; ВЭР: Топливно энергетические ресурсы, полученные как отходы или побочные продукты производственного технологического процесса. Источник: ГОСТ Р 53905 2010: Энергосбережение. Термины и определения… … Словарь-справочник терминов нормативно-технической документации

    возобновляемые топливно-энергетические ресурсы - 39 возобновляемые топливно энергетические ресурсы: Природные энергоносители, постоянно пополняемые в результате естественных процессов. Источник: ГОСТ Р 53905 2010: Энергосбережение. Термины и определения оригинал документа 3.9.8 возобновляемые … Словарь-справочник терминов нормативно-технической документации

    вторичные энергетические ресурсы - 2.21 вторичные энергетические ресурсы (reclaimable resource): Материалы искусственного происхождения, отсутствующие в природной среде, которые могут быть возобновлены, переработаны и использованы как вход в техническую энергетическую систему.… … Словарь-справочник терминов нормативно-технической документации

    Запасы топлива и энергии в природе, которые при современном уровне техники могут быть практически использованы человеком для производства материальных благ. К топливно энергетическим ресурсам относятся: различные виды топлива: каменный и бурый… … Финансовый словарь

Книги

  • Водные и энергетические ресурсы "Большой" Центральной Азии. Дефицит воды и ресурсы по его преодолению , Е. А. Борисова. Монография посвящена рассмотрению вопросов, связанных с водными и энергетическими ресурсами в странах Центральной Азии (термин "Большая Центральная Азия" предложен, чтобы включить в поле…

Энергетика, энергосбережение и

Общество в целом и каждый человек в отдельности не может обходиться без потребления энергии.

Энергия - способность производить работу или какое-то другое действие, меняющее состояние действующего субъекта. В широком смысле это - общая мера различных форм движения материи.

Для современного общества наиболее актуальными видами энергии являются электрическая итепловая . Другие разновидности - механическая, химическая, атомная и т.д. - можно считать промежуточными или вспомогательными.

Тепловая энергия (тепло, теплота) - энергия хаотического движения микрочастиц - является первичной энергией цепи преобразования энергии, ею же эта цепь и заканчивается.

Тепловая энергия используется человеком для обеспечения необходимых условий его существования, для развития и совершенствования общества, для получения электрической энергии на тепловых электростанциях, для технологических нужд производства, для отопления и горячего водоснабжения жилых и общественных зданий. Источниками энергии могут служить вещества и системы, энергетический потенциал которых достаточен для последующего целенаправленного использования.

Энергетический потенциал является параметром, оценивающим возможность использования источника энергии, выражается в единицах энергии - Джоулях или киловатт-часах.

Энергетические ресурсы – это любые источники механической, химической и физической энергии.

Энергетические ресурсы можно разделить на:

Ø первичные, источник которых – природные ресурсы и природные явления;

Ø вторичные, куда относятся промежуточные продукты обогащения и сортировки углей; гудроны, мазуты и другие остаточные продукты переработки нефти; щепки, пни, сучья при заготовке древесины; горючие газы; тепло уходящих газов; горючая вода из систем охлаждения; отработанный пар силовых промышленных установок.

Первичные энергетические ресурсы делят на:

Невозобновляемые или истощаемые (уголь, нефть, сланцы, природный газ, горючее);

Возобновляемые (древесина, гидроэнергия, энергия ветра, геотермальная энергия, торф, термоядерная энергия);

Вторичные (побочные) энергоресурсы (ВЭР) - это носители энергии, образующиеся в ходе производства, которые могут быть повторно использованы для получения энергии вне основного технологического процесса.

Около 90% используемых в настоящее время энергоресурсов составляют невозобновляющиеся (уголь, нефть, природный газ, уран и т.п.) благодаря их высокому энергетическому потенциалу, относительной доступности и целесообразности извлечения; темпы добычи и потребления их обусловливают энергетическую политику.



Эффективность использования энергоресурсов определяется степенью преобразования их энергетического потенциала в конечную используемую продукцию или потребляемые конечные виды энергии (механическая энергия движения, теплота для систем отопления или технологических нужд и т.д.), что характеризуется коэффициентом полезного использования энергоресурсов η эр:

η эр = η д ∙η п ∙η и

где η д - коэффициент добычи, извлечения потенциального запаса энергоресурса (отношение добытого ко всему количеству ресурса);

η п - коэффициент преобразования (отношения полученной энергии ко всей подведенной энергоресурсом);

η и - коэффициент использования энергии (отношение использованной энергии к подведенной к потребителю).

Для нефти η = 30…40%, для газа - 80%, угля - 40%. Современные топочные устройства при получении тепловой энергии из химической путем сжигания топлив позволяют получить η п = 94…98%; при передачи тепла потребителю через системы теплоснабжения η п снижается до 70…80%. Если же из тепловой энергии продуктов сгорания получается механическая с целью выработки электроэнергии (на тепловых электростанциях - ТЭС), то η п = 30…40%; для двигателя внутреннего сгорания η п = 20…30%. Величина η и зависит от типа конкретного потребителя и условий эксплуатации (отопительные системы - 50%). В среднем η эр = 36%.

1.2. Истощаемые и возобновляемые энергетические

ресурсы. Виды топлива, их состав и теплота сгорания.

Истощаемые ресурсы - это запасы топлива в недрах земли.

Мировой запас угля оценивается в 9-11 трлн.т. (условного топлива) при добыче более 4,2 млрд./год. Наибольшие разведанные месторождения уже находятся на территории США, СНГ, ФРГ, Австралии. Общегеологические запасы угля на территории СНГ составляют 6 трлн.т. /50% мировых/, в т.ч. каменные угли 4,7 и бурые угли – 2,1 трлн.т. Ежегодная добыча угля – более 700 млн.т., из них 40% открытым способом.

Мировой запас нефти оценивается в 840 млрд.т. условного топлива, из них 10% - достоверные и 90% - вероятные запасы. Основной поставщик нефти на мировой рынок – страны Ближнего и Среднего Востока. Они располагают 66% мировых запасов нефти, Северная Америка – 4%, Россия – 8-10%. Отсутствуют месторождения нефти в Японии, ФРГ, Франции и многих других развитых странах.

Запасы природного газа оцениваются в 300-500 трлн. м 3 . Потребление энергоресурсов в мире непрерывно повышается. В расчете на 1 человека потребление энергии за период 1990-2000 г.г. увеличилось в 5 раз. Однако это потребление энергоресурсов осуществляется крайне неравномерно. Примерно 70% мировой энергии потребляют промышленно развитые страны, в которых проживает около 30% населения Земли. В среднем на 1 человека приходится в Японии 1,5-5 т., в США – около 7т., а в развивающихся странах 0,15-0,3т. в нефтяном эквиваленте.

Человечество ещё, по крайней мере, 50 и более лет сможет обеспечить значительную часть своих потребностей в различных видах энергии за счет органического топлива. Ограничить чрезмерное их потребление могут два фактора:

Очевидная исчерпаемость запасов топлива;

Осознание неизбежности глобальной катастрофы из-за увеличения вредных выбросов в атмосферу.

К ресурсам возобновляемой энергии относятся :

Сток рек, волны, приливы и отливы, ветер как источники механической энергии;

Градиент температур воды морей и океанов, воздуха, недр земли /вулканов/ как источники тепловой энергии;

Солнечное излучение как источник лучистой энергии;

Растения и торф как источник химической энергии.

Топливо - вещество, выделяющее при определенных экономически целесообразных условиях большое количество тепловой энергии, которая в дальнейшем используется непосредственно или преобразуется в другие виды энергии.

Топливо бывает:

Ø горючее - выделяет тепло при окислении, окислитель- обычно О 2 , N 2 , азотистая кислота, перекись водорода и пр.

Ø расщепляющееся или ядерное топливо (основа ядерной энергетики (уран 235).

Горючее делят на органическое и неорганическое . Органическое горючее- углерод и углеводород. Горючее бывает природное (добытое в недрах земли) и искусственное (переработанное природное). Искусственное в свою очередь делится на композиционное (полученное механической переработкой естественного, бывает в виде гранул, эмульсий, брикетов) и синтетическое (произведенное путем термохимической переработки естественного - бензин, керосин, дизельное топливо, угольный газ и т.д.).

Более 90% потребляемой энергии образуется при сжигании естественного органического топлива 3 видов:

¨ твердое топливо (уголь, торф, сланцы).

¨ жидкое топливо (нефть и газоконденсаты).

¨ газообразное топливо (природный газ, СН 4 , попутный газ нефти).

Органическое топливо состоит из следующих составляющих: горючая составляющая (органические ингредиенты - С, Н, О, N, S) и негорючая составляющая (состоит из влаги, минеральной части).

Общепринятое слово "горючее" - это топливо, предназначенное для сжигания (окисления). Обычно слово "топливо" и "горючее" воспринимаются как адекватные, т.к. чаще всего "топливо" и бывает представлено "горючим". Однако следует знать и другие разновидности топлива. Так, металлы алюминий, магний, железо и др. при окислении так же могут выделять много теплоты. Окислителем вообще могут быть кислород воздуха, чистый кислород и его модификации (атомарный, озон), азотная кислота, перекись водорода и т.д.

Сейчас в основном используется ископаемое органическое горючее с окислителем - кислородом воздуха.

Различают три стадии преобразования исходного органического материала:

¨ торфяная стадия - распад высокомолекулярных веществ, синтез новых; при частичном доступе кислорода образуется торф и уголь, без доступа кислорода - нефть и газы;

¨ буроугольная стадия - при повышенной температуре и давлении идет полимеризация веществ, обогащение углеродом;

¨ каменноугольная стадия - дальнейшая углефикация.

Жидкая смесь углеводородов мигрировала сквозь пористые породы, при этом образовались месторождения нефти, газа; высокое содержание минеральных примесей приводило к возникновению горючих сланцев.

Твердое и жидкое органическое топливо характеризуется сложностью химического состава, поэтому обычно дается только процентное содержание (элементный или элементарный процентный состав топлива) химических элементов, без указания структур соединений.

Основной элемент, выделяющий теплоту при окислении - это углерод С, менее - водород Н. Особое внимание следует уделять сере S. Она заключена как в горючей, так и в минеральной части топлива. При сжигании сера влияет на коррозионную активность продуктов сгорания, поэтому это - нежелательный элемент. Влага W в продуктах сгорания представлена внешней ("мокрое" топливо), кристаллогидратной, образованной при окислении водорода. Минеральная часть А - это различные окислы, соли и другие соединения, образующие при сжигании золу.

Состав твердого и жидкого топлива выражается в % по массе, при этом за 100% могут быть приняты:

1) рабочая масса - используемая непосредственно для сжигания;

2) аналитическая масса - подготовленная к анализу;

3) сухая масса - без влаги;

4) сухая беззольная масса;

5) органическая масса.

Поэтому, например:

Состав топлива необходим для определения важнейшей характеристики топлива --теплоты сгорания топлива (теплотворная способность топлива).

Теплота сгорания топлива -- это количество тепловой энергии, которая может выделиться в ходе химических реакций окисления горючих компонентов топлива с газообразным кислородом, измеряется в кДж/кг для твердого и жидкого, в кДж/м 3 - для газообразного топлива.

При охлаждении продуктов сгорания влага может конденсироваться, выделяя теплоту парообразования. Поэтому различают высшую - без учета конденсации влаги, и низшую - теплоту сгорания, при этом:

Средние теплоты сгорания, кДж/кг(кДж/м 3)

мазут ……….………..40200

соляр…………………42000

торф………..………….8120

бурый уголь….……….7900

антрацит……………..20900

природный газ……….35800

Для сравнения различных видов топлива их приводят к единому эквиваленту - условному топливу , имеющему теплоту сгорания 20308 кДж/кг (7000 ккал/кг). Для пересчета реального топлива в условное используется тепловой эквивалент:

· для угля в среднем - 0,718;

· газа природного - 1,24;

· нефти - 1,43;

· мазут - 1,3;

· торфа - 0,4;

· дров - 0,25.

Твердое органическое топливо по степени углефикации делится на древесину, торф, бурый уголь, каменный уголь, антрацит.

Важной характеристикой, влияющей на процесс горения твердого топлива, является выход летучих веществ (убыль массы топлива при нагреве его без кислорода при 850 о С в течение 7 мин). По этому признаку угли делят на бурые (выход летучих более 40%), каменные (10 - 40%), антрациты (менее 10%). Воспламеняемость антрацитов поэтому хуже, но выше. Это надо учитывать при организации процесса сжигания.

Зола - порошкообразный горючий остаток, образующийся при полном окислении горючих элементов, термического разложения и обжига минеральных примесей.

Шлак - спекшаяся зола.

Эти продукты сгорания оказывают большое влияние на КПД топочного оборудования (загрязнения, зашлаковка), надежность работы (разрушение обмуровок, пережог труб).

Нефть в сыром виде редко используется как топливо, чаще всего для этой цели идут нефтепродукты. В зависимости от температуры перегонки нефтепродукты делят на фракции: бензиновые (200-225 о С); керосиновые (140-300 о С); дизельные (190-350 о С); соляровые (300-400 о С); мазутные (более 350 о С). В котлах котельных и электростанций обычно сжигается мазут, в бытовых отопительных установках - печное бытовое (смесь средних фракций).

К природным газам относится газ, добываемый из чисто газовых месторождений, газ конденсатных месторождений, шахтный метан и др. Основной компонент природного газа - метан. В энергетике используется газ, концентрация СН 4 в котором выше 30% (за пределами взрывоопасности).

Искусственные горючие газы - результат технологических процессов переработки нефти и других горючих ископаемых (нефтезаводские газы, коксовый и доменный газы, сжиженные газы, газы подземной газификации угля и др.).

Из композиционных топлив, как наиболее употребительное, можно назвать брикеты - механическая смесь угольной или торфяной мелочи со связующими веществами (битум и др.), спрессованная под давлением до 100 МПа в специальных прессах.

Синтетическое топливо (полукокс, кокс, угольные смолы) в Беларуси не используется.

Расщепляющееся топливо - вещество, способное выделять большое количество энергии за счет торможения продуктов деления тяжелых ядер (урана, плутония). В качестве ядерного топлива используется природный изотоп урана , доля которых во всех запасах урана менее 1%.

Природное топливо располагается в земной коре. Запасы угля в мире оцениваются в 14 триллионов тон (Азия - 63%, Америка - 27%). Основные запасы угля - Россия, США, Китай. Все количество угля можно представить в виде куба со стороны 21 км; из него ежегодно "выедается" человеком на свои разносторонние нужды "кубик" с ребром 1,8 км. Очевидно, при таком темпе потребления этого угля хватит на срок порядка 1000 лет. Поэтому, в общем разговоры о топливных и энергетических кризисах скорее имеют политическую, чем ресурсную подоплеку. Другое дело - уголь тяжелое, неудобное топливо, имеющее много минеральных примесей, что усложняет его использование, но главное - запасы его распределения крайне неравномерно.

Общеизвестны страны, обладающие самыми богатыми месторождениями нефти, при этом разведанные запасы нефти все время увеличиваются; прирост идет в основном за счет морских шельфов. Если некоторые страны берегут свои запасы в земле (США), другие (Россия) интенсивно их "выкачивают". Общие запасы нефти в мире ниже, чем угля, но более удобное для использования топливо, особенно в переработанном виде. После подъема через скважину нефть подается потребителям в основном нефтепроводами, железной дорогой, танкерами, расстояние может достигать нескольких тысяч километров. Поэтому в себестоимости нефти существенную долю имеет транспортная составляющая. Энергосбережение при добычи и транспортировке жидкого топлива заключается в уменьшении расхода электроэнергии на прокачку (удаление вязких парафинистых компонентов, нагрев нефти, применение экономичных насосов, увеличение диаметров нефтепроводов).

Природный газ располагается в залежах, представляющих собой купола из водонепроницаемого слоя (типа глины), под которым в пористой среде (передатчик) под давлением находится газ, состоящая в основном из СН 4 . На выходе из скважины газ очищается от песчаной взвеси, капель конденсата и других включений и подается на магистральный газопровод диаметром 0,5…1,5 м длиной несколько тысяч километров. Давление газа в газопроводе поддерживается на уровне 5 МПа при помощи компенсаторов, установленных через каждые 100…150 км. Компрессоры вращаются газовыми турбинами, потребляющими газ, общий расход газа составляет 10…12% от всего прокачиваемого. Поэтому транспорт газообразного топлива весьма энергозатратен. Транспортные расходы намного ниже для сжигания газа, но и доля его потребления мала. Энергосбережение при добычи и транспорте газообразного топлива заключается в использование передовых технологий бурения, очистки, распределения, повышения экономичности газотурбинных установок для привода компрессоров магистралей.

Для всех видов топлива коэффициент извлечения из недр составляет 0,3…0,6, а для его увеличения требуется существенные затраты.

1.3. Основные типы электростанций.

Электрическая станция – предприятие или установка, вырабатывающая электроэнергию путем преобразования других видов энергии.

Электрические станции вырабатывают электрическую и тепловую энергию для нужд народного хозяйства страны и коммунально-бытового обслуживания. В зависимости от источника энергии различают:

· тепловые электростанции (ТЭС);

· гидроэлектрические станции (ГЭС);

· атомные станции (АЭС) и др.

ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ (а. energy resources; н. Energieressourcen; ф. ressources energetiques; и. recursos energetiсоs) — все доступные для промышленного и бытового использования источники разнообразных видов энергии: механической, тепловой, химической, электрической, ядерной.

Темпы научно-технического прогресса, интенсификация общественного производства, улучшение условий труда и решение многих социальных проблем в значительной мере определяются уровнем использования энергетических ресурсов. Развитие топливно-энергетического комплекса и энергетики является одной из важнейших основ развития всего современного материального производства.

Среди первичных энергоресурсов различают невозобновляемые (невоспроизводимые) и возобновляемые (воспроизводимые) энергетические ресурсы. К числу невозобновляемых энергетических ресурсов относятся в первую очередь органические виды минерального топлива, добываемые из земных недр: нефть, природный газ, уголь, горючие сланцы, другие битуминозные горные породы, торф. Они используются в современном мировом хозяйстве в качестве топливно-энергетического сырья особенно широко и, поэтому, нередко называется традиционными энергетическими ресурсами. К возобновляемым (воспроизводимым и практически неисчерпаемым) энергетическим ресурсам относятся гидроэнергия (гидравлическая энергия рек), а также так называемые нетрадиционные (или альтернативные) источники энергии: солнечная, ветровая, энергия внутреннего тепла Земли (в том числе геотермальная), тепловая энергия океанов, энергия приливов и отливов. Особо должна быть выделена ядерная или атомная энергия, относимая к невозобновляемым энергетическими ресурсами, так как её источником являются радиоактивные (преимущественно урановые) руды. Однако со временем, с постепенной заменой атомных электростанций (АЭС), работающих на тепловых нейтронах, атомными электростанциями, использующими реакторы-размножители на быстрых нейтронах, а в будущем термоядерную энергию, ресурсы ядерной энергетики станут практически неисчерпаемыми.

Быстрое развитие мировой энергетики в 20 в. опиралось на широкое использование минерального (ископаемого) топлива, особенно нефти, природного газа и угля, добыча которых до середины 70-х гг. была сравнительно недорогой и в техническом отношении доступной. Доля нефти и газа в мировом потреблении энергетических ресурсов достигала 60% и доля угля — свыше 25% (в 1950 доля угля составляла 50%). Следовательно, свыше 85% суммарного потребления энергетических ресурсов в мире в тот период приходилось на невозобновляемые ресурсы органические топлива и лишь около 15% — на возобновляемые ресурсы (гидроэнергия, дровяное топливо и др.). С 70-х гг., когда сложность и стоимость добычи нефти и газа стали резко увеличиваться в связи с исчерпанием или значительным сокращением их запасов в легкодоступных месторождениях, появилась необходимость их жёсткой экономии и строго ограниченного использования в качестве топлива. Главные области применения ресурсов нефти и газа как ценнейшего технологического сырья стала химическая и нефтехимическая промышленность, в том числе производство синтетических материалов и моторных топлив. Важным первичным энергоресурсом для электроэнергетики становится в конце 20 века и в перспективе ядерная энергетика. В середине 80-х годов на атомных электростанциях мира было выработано свыше 12% всей электроэнергии, произведённой на планете, а в начале 21 века её доля в мировом электробалансе увеличится ещё в 2-2,5 раза. Большая роль в производстве электроэнергии принадлежит гидроэнергетическим ресурсам, источником которых является постоянное течение рек; в середине 80-х гг. на долю гидроэлектростанций приходилось 23% всей электроэнергии, выработанной в мире. Значительно возрастает роль и таких возобновляемых нетрадиционных энергетических ресурсов, как солнечная энергия (энергия солнечной радиации, поступающей на поверхность Земли), энергия внутреннего тепла самой Земли (в первую очередь геотермальная энергия), тепловая энергия Мирового океана (обусловленная большими перепадами температур между поверхностными и глубинными слоями воды), энергия морских и океанических приливов и энергия волн, ветровая энергия, энергия биомассы, основой которой является механизм фотосинтеза (биоотходы сельского хозяйства и животноводства, промышленные органические отходы, использование древесины и древесного угля). По имеющимся прогнозам, доля возобновляемых энергетических ресурсов (гидроэнергетических и перечисленных нетрадиционных) достигнет в 1-й четверти 21 века примерно 7-9% в мировом суммарном использовании всех видов первичных энергоресурсов (свыше 20-23% будет приходиться на атомную ядерную энергию и около 70% сохранится за органическим топливом — углём, газом и нефтью).

Для сопоставления тепловой ценности различных видов топливно-энергетических ресурсов используется расчётная единица, называемая условным топливом.

Введение

1. Энергетические ресурсы Российской Федерации

1.1 Состав ТЭК России

1.2 Роль и значение ТЭК для экономики и внешней торговли России

2. Современная энергетическая политика России

2.1 Проблемы и угрозы энергетической безопасности России

2.2 Энергетическая безопасность и энергетическая политика России

Заключение

Список источников

В энергетическом секторе мирового хозяйства ведущую роль играют топливно-энергетические ресурсы — нефть, нефтепродукты, природный газ, каменный уголь, энергия (ядерная, гидроэнергия).

Среди топливно-энергетических ресурсов особое место занимают нефть и природный газ. Эта группа товаров сохраняют роль лидеров среди прочих товарных групп в международной торговле, уступая только продукции машиностроения.

Россия играет ключевую роль на мировом рынке энергетических ресурсов.

Наша страна выступает одним из гарантов общей энергетической безопасности и стабильности мира в долгосрочной перспективе, т.к. доля России в мировом производстве нефти более 12%, природного газа около 30%, угля около 7%. Суммарно на Россию приходится 10,5% производства первичной энергии.

Для самой России топливно-энергетический комплекс (ТЭК) приносит более 50% доходов федерального бюджета.

Также сегодня ТЭК обеспечивает 25% валового внутреннего продукта и 30% объема промышленного производства в стране. Темпы добычи нефти и газа в России все нарастают, так добычи природного газа в России к 2010 г. может составить 645-665 млрд. м³., а к 2020 г. возрасти до 710-730 млрд. м³. А по другим прогнозам она напротив может упасть на 30-50%.

В настоящее время, в силу сырьевой ориентации российской экономики наличие ТЭР стало основой успешного развития регионов РФ, обладающих ими.

С ними напрямую связано благосостояние всех граждан России, такие проблемы, как безработица и инфляция. Возросшее значение ТЭР в развитии нашей страны обусловило пристальный интерес к ним со стороны общества и правительства, а появившиеся в последние десятилетия проблемы отрасли становятся проблемами каждого гражданина России.

Эффективная энергетическая политика для России имеет стратегическое значение, отсюда и высока актуальность данной темы.

Цель работы — анализ современного состояния энергетического сектора и рассмотрение энергетической политики России.

Определить роль и значение энергетического сектора для России;

Проанализировать современное использование энергетических ресурсов и определить проблемы связанные с их использованием;

Рассмотреть основные направления перспективного развития энергетической политики России.

В настоящее время энергетическая безопасность России признана одним из приоритетов национальной политики.

Появились специализированные публикации и нормативные документы по проблеме. Для написания этой работы использовались такие труды как: "Энергетика России", 2008; "Энергетическая безопасность России", 2004; "Реформирование энергетики и энергетическая безопасность", 2006 и другие работы.

При написании работы использовались последние статистические данные Госкомстата РФ, аналитического центра "Минерал", а так же Федерального агентства по недропользованию РФ.

1.

Энергетические ресурсы Российской Федерации

1.1 Состав ТЭК России

Топливно-энергетический комплекс (ТЭК) России объединяет отрасли по добычи топливно-энергетических ресурсов и производству на их основе электроэнергии.

Топливно-энергетические ресурсы — запасы топлива и энергии в природе, которые при современном уровне техники могут быть практически использованы человеком для производства материальных благ.

К топливно-энергетическим ресурсам относятся: различные виды топлива: каменный и бурый уголь, нефть, горючие газы, горючие сланцы, торф, дрова; — энергия падающей воды рек, морских приливов, ветра; — солнечная и атомная энергия .

Таблица 1.

Топливно-энергетический потенциал РФ

Главные для России виды ТЭР — топливные (природный газ, нефть, уголь), объем их производства приведен в таблице 2.

Таблица 2.

Энергетические ресурсы

Показатели динамики добычи первичных ТЭР.

Анализируя основные показатели производства ТЭР за последние годы, можно отметить, что начиная с 1992 года добыча ТЭР в стране снижалось.

С 1997 году впервые получен прирост добычи. В настоящее время по добычи ТЭР Россия достигла докризисного периода (1991) и продолжает их наращивать, хотя, с учетом экономического кризиса и снижения спроса в мире на энергоносители, можно прогнозировать некоторое снижение объемов добычи ТЭР в России в ближайшие годы .

Так же к группе топливных ресурсов относится торф и горючий сланец.

Еще один вид — ядерное топливо. Топливом для атомных электростанций является уран.

Наша страна является лидером по производству обогащенного ядерного топлива и занимает 40 процентов его мирового рынка.

Российские газоцентрифужные разделительные заводы обеспечивают потребности в ядерном топливе не только собственных потребителей, но и примерно трети всех АЭС в мире. Однако по запасам урановых руд, Россия уступает лидерам (США, Австралии, Бразилии). После распада СССР и потери крупнейших месторождения в Средней Азии и Украине в РФ добывается 3000 тонн урана в год, нехватка сырья устраняется за счет экспорта, так в 2008 году было заключено соглашение о ежегодной закупке 4500 тонн уранового концентрата в Австралии .

Гидроэнергетические ресурсы еще один существенный энергетический ресурс России.

На территории нашей страны сосредоточено около 9% мировых запасов гидроресурсов. По обеспеченности гидроэнергетическими ресурсами Россия входит в число лидеров (второе место).

энергетический топливный комплекс россия

Общий валовой гидроэнергопотенциал России оценивается в 2900 млрд кВт-ч годовой выработки электроэнергии. Технически достижимый уровень использования гидроэнергоресурсов оценивается в 70% от указанной цифры. В настоящее время уровень освоения гидропотенциала России составляет всего 20%, притом, что Россия занимает второе место в мире по запасу гидроресурсов.

На рисунке 1 представлен топливно-энергетический баланс России за 2008 год.

Рис.1. Топливно-энергетический баланс России

Таким образом, Россия богата разнообразными энергетическим ресурсами и является мировым лидером по их добычи. Однако, используются они не равномерно.

На рисунке представлен топливно-энергетический баланс России. Видно, что в нем преобладают природный газ, нефть и уголь. На другие виды топливно-энергетических ресурсов, в том числе альтернативные источники приходится всего 8,7%.

1.2 Роль и значение ТЭК для экономики и внешней торговли России

Топливно-энергетический комплекс тесно связаны со всей промышленностью страны. На использование (добычу, транспорт, перерарботку) ТЭР расходуется более 20% всех денежных средств.

На отрасли занятые использованием ТЭР приходится 30% основных фондов и 30% стоимости промышленной продукции России. Предприятия ТЭК используют 10% продукции машиностроительного комплекса, 12% продукции металлургии, потребляет 2/3 труб в стране, дает больше половины экспорта РФ и значительное количество сырья для химической промышленности .

Топливно-энергитические ресурсы — важнейший экспортный товар России, обеспечивающий основную долю валютных поступлений, формирующий бюджет нашей страны, поддерживающий ее авторитет на международной арене.

Доля энергоресурсов в товарной структуре экспорта России

Нефть важнейший продукт потребления на внутреннем рынке. Потребление нефти внутри РФ оценивается долей около 60%. Нефть основное сырье, для нефтеперерабатывающей, нефтехимической и химической промышленности, продукты первичной переработки нефти (мазут) — важное сырье для топливной промышленности.

Кроме этого нефть важнейший экспортный товар для России, от которого во много зависит наполняемость федерального бюджета (рисунок 3).

Рис.3 Динамика экспорта нефти из России

Россия — крупнейший в мире экспортёр газа, на её долю приходится более 20% мировых межгосударственных поставок.

Экспорт природного газа из РФ впервые за последние годы сократился — на 2,1% по сравнению с 2005 г.; он составил 182,8 млрд. куб. м, или около 31% добытого (рисунок 4).

Рис.4 Динамика экспорта газа из России

Россия входит в число лидеров по экспорту угля на мировой рынок, поставляя его в 45 стран мира.

Так и энергетического, занимая третье место по объёмам экспорта угля в мире после Австралии и Индонезии. С 1999 г.

российский экспорт угля неуклонно растёт, в 2006 г. он увеличился очень существенно — на 18%, превысив 90 млн. т. . Более 80% российского угольного экспорта составляют угли Кузнецкого бассейна, отличающиеся высоким качеством. В мировом объеме экспорт российского угля составляет около 12%.

В 2006 г. российский экспорт вырос более чем на 9 % и составил, 7,36 млн. т.

Анализ динамики и структуры валового внутреннего продукта в России

1.2 Состав ВВП

валовой национальный счет доход В состав ВВП включается только то, что продается.

Глава 2 ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ И ИХ ИСПОЛЬЗОВАНИЕ

При вычислении ВВП приходится суммировать в единый экономический показатель множество совершенно разнородных товаров…

Анализ отчета о прибылях и убытках

1. Состав и значение отчета о прибылях и убытках в России и в международной практике

Внебюджетные фонды

2.

Состав внебюджетных фондов в России, их назначение

Согласно ст.144 Бюджетного кодекса РФ в состав бюджетов государственных внебюджетных фондов входят бюджеты государственных внебюджетных фондов Российской Федерации и бюджеты территориальных государственных внебюджетных фондов…

Государственное регулирование экономики

1.1 Состав ТЭК

Топливно-энергетический комплекс представляет собой сложную систему — совокупность производств, процессов, материальных устройств по добыче топливно-энергетических ресурсов (ТЭР), их преобразованию, транспортировке…

Методы ценообразования

1.1 Состав цены

«Формирование цены происходит в процессе движения товара от производителя до потребителя, и ее величина зависит от количества посредников, уровня затрат в каждом звене, доли прибыли, получаемой каждым участником товародвижения…

Отраслевая структура машиностроительного комплекса и факторы размещения его отраслей и производств

1.

Состав и значение машиностроения в народном хозяйстве России

Машиностроительный комплекс — основа научно-технического прогресса и материально-технического перевооружения всех отраслей народного хозяйства Машиностроительный комплекс является ведущим среди межотраслевых комплексов и отражает…

Оценка эффективности деятельности ОАО «Сбербанк»

2.1 Характеристика ОАО «Сбербанк России» и оценка его положения на финансовом рынке России

История Сбербанка России началась более 170 лет назад, в XIX веке.

За почти два столетия банк завоевал статус крупнейшего финансового института страны. Сбербанк сегодня — это современный универсальный банк…

Реформирование структуры российских монополий

2.2 Монополии в России на примере ОАО «Газпрома», РАО «ЕЭС России», ОАО «Российские железные дороги»

ОАО «Газпром» — глобальная энергетическая компания Путем преобразования Государственного газового концерна в феврале 1993 г.

создано РАО «Газпром», в 1999 г…

Современное состояние малого бизнеса в России

1. Состав и структура малого предпринимательства в России

Российский малый бизнес, как и малый бизнес в любой другой стране, многолик и включает в себя разные типы и формы предпринимательства. Самый тонкий, «верхний» слой его — это немногочисленные, малые по числу занятых…

Технико-экономическое обоснование деятельности предприятия

3.1 Понятие и состав

К трудовым ресурсам относится та часть населения, которая обладает необходимыми физическими данными, знаниями и навыками труда в соответствующей отрасли.

Достаточная обеспеченность предприятий нужными трудовыми ресурсами…

Технико-экономическое обоснование производства нового изделия

5.1. Состав капиталовложений

В состав капитальных вложений включаются единовременные затраты на формирование основных фондов или долгосрочных активов предприятия. Эти затраты связаны с приобретением оборудования, строительством зданий и сооружений…

Управление государственной недвижимостью

2.1 Состав и характеристика государственного недвижимого имущества в России

Под понятием «государственная недвижимость» подразумевают собственность или имущество Российской Федерации или ее субъектов, а также представителей муниципальной власти.

Любые органы власти при этом имеют право распоряжаться ей…

Ценообразование на предприятии

1. Состав и структура цен

Все действующие в экономике цены взаимосвязаны и образуют систему, которая находится в постоянном развитии под влиянием множества рыночных факторов. Эта система состоит из отдельных блоков (оптовые цены, закупочные цены, розничные цены и др.)…

Экономика электроэнергетики

2.12 Абонентная плата за услуги РАО «ЕЭС России» по организации функционирования и развитию ЕЭС России

Оплата услуг РАО определяется: , руб./год где: НРАО — норматив платы за услуги РАО «ЕЭС России» по организации функционирования и развитию ЕЭС России, руб./МВт*час; (см…

Экономическое районирование

3.2 Состав крупных экономических районов России

В настоящее время в составе России имеется 12 крупных экономических районов (регионов): Северный, Северо-Западный, Центральный, Центрально-Черноземный, Волго-Вятский, Поволжский, Северо-Кавказский, Уральский, Западно-Сибирский…

Энергетический ресурс - это запасы энергии, которые при данном уровне техники могут быть использованы для энергоснабжения. Это широкое понятие относится к любому звену «энергетической цепочки», к любой стадии энергетического потока на пути от природного источника стадии потребления энергии.

Энергоресурсы классифицируются в зависимости от целей и задач классификации.

Если за основу взять стадии энергетического потока, то рассматривать следующие виды энергетических ресурсов, энергии энергоносителей:

- природные энергетические ресурсы , которые, в свою очередь подразделяются на: топливные: органическое топливо-уголь, нефть, газ, сланцы, торф, дрова и некоторые другие (например, битуминозные пески); расщепляющиеся материалы (ядерное горючее) – уран 235 и 238; нетопливные: гидроэнергия, энергия Солнца, ветра, приливов, морских волн, геотермальная энергия и некоторые другие виды (например, энергия разности температурных потенциалов океанских глубин и поверхности);

- облагороженные (обогащенные) энергоресурсы : брикеты, концентраты, сортовой уголь, промпродукт, шлам, отсев;

- переработанные энергоресурсы : светлые нефтепродукты, мазуты, прочие темные нефтепродукты, кокс, полукокс, коксовая мелочь, уголь древесный, смола, антрацит;

- преобразованные энергетические ресурсы : электроэнергия, лота, сжатый воздух и газы (азот, кислород, водород, аргон, оксид, углерода и др.), генераторный газ, коксовый газ, сланцевый газ, газ нефтепереработки, биогаз и некоторые другие (например, жидкое топливо, получаемое из низкокачественных углей);

- побочные (вторичные) энергоресурсы : горючие производственные и непроизводственные отходы (твердые, жидкие, газообразные); тепловые отходы (преимущественно жидкие и газообразные); избыточное давление продуктов и промежуточных продуктов (переделов).

Мировые запасы топливно-энергетических ресурсов .

Учет мировых запасов топливно-энергетических ресурсов и перспективы их использования представляют собой глобальную проблему, постоянно заботящую мировую научную общественность. Европейское объединение независимых экспертов «Римский клуб», готовит периодические доклады о путях развития человечества, где существенное место занимают топливноэнергетические вопросы.

Так, в 70-е годы XX в. в связи с энергетическим кризисом 1972 г. общие мировые запасы органических топлив с учетом экономически оправданной извлекаемости оценивались (с округлением) всего в 1 трл.т (в условном исчислении).

Если принять за основу перспективных расчетов тенденции прошлого - удвоение суммарного мирового энергопотребления каждые 20 лет, то при потреблении в 2000 и последующих годах (при стабилизации потребления) по 20 млрд, т этих запасов должно было бы хватить всего на 50 лет, т.

е., считая от 1980 г., только до 2030 г.

Следует отметить, что аналогичные опасения возникали у человечества также в начале XX века, когда прогнозировалась исчерпаемость топливных запасов (преимущественно угля) к 60-м годам. Однако тогда мировая энергетика находилась на другом, значительно более низком уровне развития и соответственно значительно хуже были исследованы топливные месторождения, а некоторые из них вообще еще не были открыты.

Тогда мировая общественность впервые задумалась о поиске новых видов энергии для будущего удовлетворения своих постоянно растущих потребностей.

Именно тогда были предложены многие из известных сегодня альтернативных, так называемых «возобновляемых» видов энергии: солнечная, геотермальная, энергия ветра, приливов и отливов, движения волн, разница термического потенциала поверхности и глубин мирового океана и многое другое .

При дополнительных исследованиях и уточнениях после 1980 г. во время своеобразной «инвентаризации» мировых запасов цифры стали более оптимистичными - природного органического топлива должно хватить на весь XXI в.

Однако все эти прогнозы, как и в начале века, дали ощутимый толчок к поиску возобновляемых энергоресурсов, альтернативных органическому топливу.

По данным ЮНЕСКО в недрах Земли содержится 1016 т (1010 Гига-тонн - Гт; 1 Гт = 1 млн.

т) ископаемого углерода. К сожалению, не весь он легко или рентабельно добываем.

Уголь является после дров самым широко применяемым видом природного органического топлива.

Известные, доступные для разработки, запасы угля оцениваются в 600 Гт (примерно в 4 раза больше добытого). Возможно, что запасы угля на Земле достигают 10 000Гт.

Предполагается, что 2500 Гт из них доступны для разработки.

Нефть , по оценкам ЮНЕСКО, использована примерно на 1/3 от уровня и доступных для разработки мировых запасов.

Доказанные запасы составляют 884 Гт, однако в конечном счете пригодными для добычи могут оказаться около 300 Гт. В последние годы открываются или уточняются по запасам месторождения нефти общим объемом около 5 Гт ежегодно, т.е. больше, за год. Предполагается, что в настоящее время достигнут максимум добычи нефти, после чего ее мировое производство и потребление начнут снижаться.

Природный газ к настоящему использован примерно на 40 % его известных запасов, около 590 Гт, причем его извлекаемость больше, чем у нефти, и составить также примерно 300 Гт.

Максимум производства и потребления ожидается в 2010 г., когда его потребление в 3- раза превысит существующее.

Горючие сланцы и битуминозные пески - наименее эффективные виды ископаемого органического топлива. Из них, правило, добывается нефть, причем значительная часть добываемого сырья составляет пустая порода.

Так, в бывшем СССР ежегодно перерабатывалось 35 млн. тонн сланцев, из которых извлекалось около 12 т нефти.

Доказанные на по оценкам 70-80-х годов XX в. составляют примерно 900 млрд. т в пересчете на угольный эквивалент (с теплотой сгорания 6000 ккал/кг).

В числе: уголь - 600 млрд.т, нефть - 200 млрд.т, газ - 100 млрд.т; потребление энергии в год - 5 млрд.т. Позже мировые запасы несколько переоценены, и современные цифры, особенно по запасам угля, существенно выше.

Среди возобновляемых источников энергии наиболее существенными признаются следующие.

Геотермальная энергия .

Каждый квадратный метр поверхности Земли постоянно излучает около 0,06 Вт-слишком малая величина, чтобы ее мог ощутить человек. Однако в целом планета ежегодно теряет около 2,8- 1014 кВт ч. При таких темпах Земля должна бы остыть до температуры космического пространства через 200 млн.

лет. Но тот факт, что Земле уже 4,5 млрд. лет, означает, что энергия поступает изнутри нее, и именно от нагрева в результате радиоактивного распада определенных изотопов в горных породах земной коры, находящихся порой на значительной глубине. Известно понятие геотермический градиент : температура земных недр возрастает на 30°С с увеличением глубины на 1 километр. В некоторых районах геотермическая активность усиливает этот эффект и температура может повышаться до 80°/км. Однако пар геотермального происхождения имеет температуру выше 300 °С, что ограничивает эффективность его использования.

Таким образом, геотермальная энергия - это фактически разновидность ядерной энергии.

В настоящее время действует около 20 геотермальных электростанций мощностью от нескольких МВт до 500 МВт каждая.

Их общая мощность около 1,5 ГВт (1 ГВт = 103 МВт = 106 кВт). В среднем одна буровая скважина, пробуренная на нужную глубину (от сотен метров до километра в зависимости от характера земной коры), может дать около 5 MВт, и срок ее действия-10 - 20 лет.

Приливные волны Мирового океана несут около 3 ТВт знергии (1 ТВт = 1012Вт= 109кВт= 106 МВт = 103 ГВт).

Однако ее получение рентабельно лишь в нескольких районах планеты, где приливы особенно высоки, например, в некоторых районах Ла-Манша и Ирландского моря вдоль побережья Северной Америки и Австралии и на отдельных участках Белого и Баренцева морей.

По техническим причинам приливные станции работают лишь на 25 % своей нормативной мощности, так что из общего потенциала 80 ГВт может быть использовано лишь 20 ГВт.

Несколько лет действует одна из самых крупных приливных электростанций близ Ла-Ранс (Франция) проектной мощностью 240 МВт, которая при довольно небольших затратах производит 60 МВт.

Волны Мирового океана содержат еще около 3 ТВт энергии. Обычная волна в Северном море несет 40 кВт энергии на каждый метр длины на протяжении 30 % времени своего существования и около 10 кВ на метр в течение 70 % времени.

Расчетные данные о том, какую энергию можно получить от волн, сильно расходятся. Согласно одним - это 100 ГВт во всем мире, по другим - 120 ГВт можно получить лишь у берегов Англии. Несколько экспериментальных прототипов волновых энергетических установок построено в Англии и Японии.

Дующие на Земле ветры обладают энергией в 2700 ТВт, но лишь 1/4 часть их находится на высоте до 100 метров над поверхностью Земли. Если на всех континентах построить ветряные установки, беря в расчет только поверхность суши и учитывая неизбежные потери, то это может дать максимум 40 ТВт.

Однако даже 1/10 часть этой энергии превышает весь гидроэнергетический потенциал. При использовании энергии ветра человечество столкнулось с неожиданными проблемами.

В США на побережье Флориды были сооружены мощные ветряки с диаметром лопастей свыше 3-х метров. Оказалось, что эти установки генерируют довольно мощное излучение неслышимого инфразвука, который, во-первых удручающе действует на человеческую психику, а во-вторых, резонирует естественные колебания таким образом, что на расстоянии нескольких километров дрожат и лопаются стекла в домах, стеклянная посуда, люстры и т.п.

Изменение (уменьшение) диаметра ветряных установок пока не дало положительных результатов, так что дальнейшее сооружение подобных генераторов является проблематичным.

Гидроэнергия . На Земле имеется 1018 т воды, однако лишь 1/2000 часть ее ежегодно вовлекается в круговорот, испаряясь и вновь выпадая на поверхность в виде дождя и снега. Но даже эта ничтожная доля составляет 500 000 км3 воды. Ежегодно из океанов испаряется 430 000 и с суши 70 000 км3 воды.

Из них 390 000 км3 воды выпадает в виде осадков обратно в океаны и 110 000 - на сушу. Таким образом, ежегодно 40 000 км3 воды стекает с континентов в океаны. Средняя высота континентов - 80 м.

Энергетический потенциал гидроресурсов, использовать который экономически целесообразно, в России составляет порядка 1 трлн.

кВт ч/год, в том числе на больших и средних реках около 850 млрд. кВт.ч/год. По этому показателю мы занимаем второе место в мире после Китая (табл. 2.1).

Таблица 2.1. Использование гидроэнергетического потенциала

Тепловая энергия океанов .

мировой океан поглощает 70% солнечной энергии, падающей на Землю. В океанских течениях заключено 5-8 Твт энергии. Перепад температур между холодными водами на глубине несколько сот метров и теплыми водами на поверхности океана представляет собой огромный источник энергии, оцениваемый в 20-40 тыс.ТВт, из которых практически могут быть освоены лишь 4 ТВт.

Солнечная энергия .

Энергетическая отдача Солнца равнозначна сжиганию или превращению в энергию массы в количестве 4,2-106 т/с. Учитывая, что общая масса Солнца составляет 22 1026 т, можно подсчитать, что Солнце будет продолжать выделять энергию еще в течение 2000 млрд.

лет. Земля, находящаяся от Солнца на расстоянии 150 млн. км, получает приблизительно 2 миллиардные доли общего излучения Солнца. Общее количество энергии Солнца, достигающей поверхности Земли за год, в 50 раз превышает всю ту энергию, которую можно получить из доказанных запасов ископаемого топлива, и в 35 000 раз превышает нынешнее ежегодное потребление энергии в мире.

Из общего количества энергии отражение от поверхности Земли - 5 %, отражение облаками - 20 %, поглощение самой атмосферой - 25 %, рассеивается в атмосфере, но достигает земли - 23 %, достигает земли непосредственно 27%, всего на поверхности Земли - 50 %.

Среднее количество солнечной энергии, попадающей в атмосферу Земли, 1,353 кВт/м2 или 178000 ТВт. Гораздо меньшее ее количество достигает поверхности Земли, а доля, которую можно использовать, еще меньше.

Среднегодовая цифра составляет 10 000 ТВт, что примерно в 1000 раз превышает нынешнее потребление энергии в мире. Максимальное солнечное облучение достигает 1 кВт/м2, но это длится лишь в течение 1-2 ч в разгар летнего дня. В большинстве районов мира среднее облучение солнечным светом составляет порядка 200 Вт/м2.

Один из методов получения солнечной энергии заключается в нагреве парового котла турбины с помощью системы зеркал, собирающих солнечный свет.

Солнечная электростанция мощностью 10 МВт потребует около 2000 рефлекторов площадью по 25 м2 каждый. Другой путь - использование фотоэлементов, которые непосредственно преобразуют солнечную энергию в электричество, обычно с КПД 10-15 %. Небольшие установки мощностью 250-1000 кВт существуют, однако они дороги из-за высокой стоимости фотоэлементов.

При массовом производстве таких установок есть надежда сократить затраты до уровня, при котором станет осуществимой электрификация изолированных поселений с помощью фотоэлементных установок.

Солнечное топливо . Около 90 % солнечной энергии, накопленной на поверхности Земли, сосредоточено в растениях.

Общее количество такой энергии - около 635 ТВт-лет, что примерно равно количеству энергии, содержащейся в наших запасах угля.

Однако сегодня для энергетического использования низкокалорийного древесного и древовидного топлива нецелесообразно его прямое сжигание. На базе низкокачественной древесины, древесных отходов, горючего мусора, фекальных стоков и отбросов цивилизации возникла и развивается биоэнергетика, позволяющая с помощью бактерий, в том числе анаэробных, перерабатывать органическую массу в топливо, преимущественно - в метан.

Оценивая современное и перспективное использование нетрадиционных источников энергии, мировая научная общественность сходится на следующих цифрах (табл.

Таблица 2.2. Современное и прогнозируемое использование и возобновляемых источников энергии в мире, млрд. кВт.ч

Общая картина добычи и производства различных видов первичной энергии и энергетических ресурсов в будущем приведена в табл.

Таблица 2.3. Варианты производства первичной энергии в мире в 1975-2030 гг., ТВт - год в год.

Первичный источник Базовый год 1975 Максимальный вариант Минимальный вариант
2000 г. 2030 г. 2000 г. 2030 г.
Нефть 3,62 5,89 6,83 4,75 5,02
Газ 1,51 3,11 5,97 2,53 3,47
Уголь 2,26 4,95 11,8 3,93 6,45
Реакторы на обычной воде 0,12 1,7 3,21 1,27 1,89
Реакторы – размножители на быстрых нейтронах 0,04 4,88 0,02 3,28
Гидроэнергия 0,5 0,83 1,46 0,83 1,46
Солнечная энергия 0,1 0,49 0,09 0,3
Прочие 0,21 0,22 0,81 0,17 0,52
Всего 8,21 16,84 35,65 13,59 22,39

2.1. ОБЩИЕ ПОЛОЖЕНИЯ

Энергетическими ресурсами называют выявленные природные запасы различных видов энергии, пригодные для использования в широких масштабах для народного хозяйства. Их следует отличать вообще от природных запасов, которые практически бесконечны - это солнечная и геотермальная энергии, энергия океанов и морей, ветра, но эта энергия в обозримой перспективе в значительных масштабах применяться не будет.

Основные виды энергетических ресурсов в современных условиях - уголь, газ, нефть, торф, сланцы, гидроэнергия, атомная энергия.

Энергетические ресурсы используют для получения того или иного вида энергии.

Под энергией понимается способность какой-либо системы производить работу или тепло (Макс Планк). Соответственно, получение требуемого количества энергии связано с затратой некоторого количества ка-кого-либо рода энергетического ресурса.

Энергоресурсы, также как и энергия, могут быть первичными и вторичными.

Первичные - ресурсы, имеющиеся в природе в начальной форме. Энергия, получаемая при использовании таких ресурсов, является первичной.

Среди первичных - выделяют возобновляемые и невозобновляемые.

Возобновляемые - восстанавливаются постоянно, например, гидроэнергия и энергия ветра, солнца и т.

К невозобновляемым - относятся те, запасы которых по мере их добычи необратимо уменьшаются, например уголь, сланцы, нефть, газ, ядерное топливо.

Подразделение на группы, а также перечень отдельных Первичных энергоресурсов, используемых в настоящее время, приведены ниже:

Ядерная энергия. геотермальная энергия,

Гравитационная энергия, энергия морских приливов.

Если исходная форма первичных энергоресурсов в результате превращения или обработки изменяется, то образуются вторичные энергоресурсы и, соответственно, вторичная энергия.

Ко вторичным - относятся все первичные энергоресурсы после одного или нескольких превращений. Вторичные энергоресурсы - это большая часть топливных форм (бензин и другие нефтепродукты, электричество и т.

д.), которые представлены ниже :

Для соизмерения ресурсов и определения действительной экономичности их расходования принято использовать понятие «условное топливо».

Его низшую рабочую теплоту сгорания Qp принимают равной 29300 ГДж/кг (7000 Гкал/кг).

Классификация энергетических ресурсов

Зная теплоту сгорания и количество натурального топлива, можно определить эквивалентное количество тонн условного топлива, (т у.

Где Внат - количество натурального топлива, т.

При оценке ресурсов газа в условном топливе в формулу (2.1) Виат подставляется в тыс. м3, а теплота сгорания натурального топлива принимается в килоджоулях на 1 м3.

При необходимости оценки энергоресурсов в том числе гидроресурсов в кВт ¦ ч - 1 кВт ч приравнивается к 340 г у.

В современных условиях 80-85 % энергии получают, расходуя иево-зобновляемые энергоресурсы: различные виды угля, горючие сланцы, нефть, природный газ, торф, ядерное горючее.

Преобразование топлива в конечные виды энергии связано с вредными выбросами твердых частиц, газообразных соединений, а также большого количества тепла, воздействующих на окружающую среду.

Возобновляемые энергоресурсы (исключая гидроэнергетические) не нуждаются в транспортировке к месту потребления, но обладают низкой концентрацией энергии, в связи с чем преобразование энергии большинства возобновляемых источников требует больших затрат материальных ресурсов и, следовательно, больших удельных затрат денежных средств (руб/кВт) на каждую установку.

Возобновляемые источники энергии в экологическом отношении обладают наибольшей чистотой.

Из возобновляемых энергоресурсов в настоящее время в основном используются гидроэнергия и в относительно малых количествах энергия солнца, ветра, геотермальная энергия.

Из всех видов потребляемой энергии наибольшее распространение получила электроэнергия.

ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ

Энергия - всеобщая основа природных явлений, ба­зис культуры и всей деятельности человека. В то же вре­мя энергия понимается как количественная оценка раз­личных форм движения материи, которые могут превра­щаться одна в другую. По видам энергия подразделяется на химическую, механическую, электрическую, ядерную и т. д. Возможная для практического использования че­ловеком энергия сосредоточена в материальных объек­тах, называемых энергетическими ресурсами.

Из многообразия энергоресурсов, встречающихся в природе, выделяют основные, используемые в боль­ших количествах для практических нужд. К ним отно­сят органические топлива, такие, как уголь, нефть, газ, а также энергию рек, морей и океанов, солнца, ветра, тепловую энергию земных недр (геотермальную) и т. д.

Энергоресурсы разделяют на возобновляемые и невозобновляемые. К первым относят энерго­ресурсы непрерывно восстанавливаемые природой (вода, ветер и т. д.), а ко вторым - энергоресурсы, ранее на­копленные в природе, но в новых геологических условиях практически не образующиеся (например, каменный уголь).

Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), называется первичной. Энергия, получаемая человеком после преобразования первичной энергии на специальных установках - станциях, называется вторич­ной (энергия электрическая, пара, горячей воды и т. д.). В своем названии станции содержат указание на то, какой вид первичной энергии на них преобразуется. На­пример, тепловая электрическая станция (сокращенно ТЭС) преобразует тепловую энергию (первичную) в эле­ктрическую энергию (вторичную), гидроэлектростанция (ГЭС) -энергию воды в электрическую, атомные элект­рические станции (АЭС) -атомную энергию в электри­ческую; кроме того, первичную энергию приливов преобразуют в электрическую на приливных электростанциях (ПЭС), аккумулируют энергию воды - на гидроаккумулирующих станциях (ГАЭС) и т. д.

Получение энергии необходимого вида и снабжение ею потребителей происходит в процессе энергетиче­ского производства, в котором можно выделить пять стадий.

1. Получение и концентрация энергетических ресур­сов: добыча и обогащение топлива, концентрация напо­ра с помощью гидротехнических сооружений и т. д.

2. Передача энергетических ресурсов к установкам, преобразующим энергию; она осуществляется перевозка­ми по суше и воде или перекачкой по трубопроводам во­ды, газа и т. д.

3. Преобразование первичной энергии во вторичную, имеющую наиболее удобную для распределения и по­требления в данных условиях форму (обычно в элект­рическую энергию и тепловую).

4. Передача и распределение преобразованной энер­гии.

5. Потребление энергии, осуществляемое как в той форме, в которой она доставлена потребителю, так и в преобразованной.

Если общую энергию применяемых первичных энер­горесурсов принять за 100%, то полезно используемая энергия составит только 35-40%; остальная часть теря­ется, причем большая часть - в виде теплоты (рис. 1.1).

Потери энергии определяются существующими в на­стоящее время техническими характеристиками энерге­тических машин.

Различные виды энергоресурсов неравномерно рас­пределены по районам Земли, по странам, а также внут­ри стран. Места их наибольшего сосредоточения обычно не совпадают с местами потребления, что наиболее за­метно для нефти. Больше половины всех мировых запа­сов нефти сосредоточено в районах Среднего и Ближнего Востока, а потребление энергоресурсов в этих районах в 4-5 раз ниже среднемирового. В этой ситуации важно создать оп­тимальные межгосударственные потоки энергоресурсов и продуктов их переработки и максимально использовать запасы энергоресурсов, расположенные вблизи от основ­ных потребляющих районов.

Концентрация потребления энергоресурсов в наибо­лее развитых странах привела к такому положению (рис. 1.2), когда 30% населения в мире потребляет 90% всей вырабатываемой энергии, а 70% населения - только 10% энергии. При этом примерно 3 / 4 установленной мощности электростанций и мирового производства электроэнергии приходится всего на 10 наиболее промышленно развитых стран.

Рис. 1.1. Схемы использования энергии:

а - механической энергии и теплоты, доставленных потребителям; б - энер­гетических ресурсов

Наблюдается тенденция увеличения неравномер­ности потребления энергетических ресурсов. Так, свыше половины населения земного шара, проживающего в раз­вивающихся странах, потребляют менее 100 кВт*ч элект­роэнергии, приходящейся на одного человека при средне­мировом показателе, близком к 1500 кВт*ч.

Рис. 1.2. Характеристики мирового потребления энергоре­сурсов:

максимальное и минимальное потребление энергии на душу населения

Эти цифры характеризуют социальное неравенство, отраженное в неравномерности потребления энергоресурсов. Тенденция к увеличению неравномерности общего потребления энергии в капиталистических странах иллюстрируется.

Несовпадения мест сосредоточения и потребления энергоресурсов вызывают необходимость их транспорти­ровки. Энергия может передаваться в различной форме (рис 1.3). Например, можно перевозить нефть и уголь от месторождений до крупных промышленных центров и городов и затем сжигать их на электростанциях, пре­вращая электрическую энергию в тепловую. Возможен и другой вариант, когда электростанция сооружается вблизи месторождений топлива, а электрическая энергия передается по проводам к удаленным промышленным предприятиям и городам.

Целесообразность передачи на расстояние тех или иных носителей энергии определяется их энергоемкостью, под которой понимается количество энергии приходя­щееся на единицу массы физического тела. Среди при­меняемых энергоносителей наибольшей энергоемкостью обладают радиоактивные изотопы урана и тория: 2 22 ГВт-ч/кг (8-Ю 12 Дж/кг). Вследствие огромной энергоемкости атомного топлива практически не сущест­вует проблемы транспорта его на расстояние, так как для работы мощных электрических установок требуются сравнительно малые его количества. Энергоемкость при­меняемого топлива в среднем по всем видам составляет 0,834 кВт*ч/кг (3*10 6 Дж/кг).

Таблица 1.1

Органическое топливо вследствие его специфических свойств и исторически сложившихся условий пока остается основным источником используемой человечеством энергии. Мировые запасы органического топлива приве­дены в табл. 1.1. Запасы топлива, имеющего различную энергоемкость, удобно выражать в условном топливе.

Топливо по своей природе относится к невозобновляемым источникам энергии, так как оно запасено в далекие доисторические эпохи и практически не восполня­ется.

Оценки запасов орга­нического топлива колеб­лются в широких преде­лах в зависимости от учи­тываемых условий его за­легания и возможностей добычи. Прогнозные, или геологические, запасы топ­лива, получаемые на ос­нове теоретического предсказания, существенно больше. В табл. 1.1 при­ведены округленные оцен­ки запасов топлива на планете и соответствующие им периоды времени, в течение которых топливо может быть использовано полностью. При этом, если геологические запасы топлива принять за единицу, то достоверные за­пасы оказываются в 2 раза меньше, а запасы, которые можно извлечь с учетом современных технических и эко­номических возможностей,- в 4 раза меньше.

Рис. 1.4. Графики роста мирового продукта и энергопотребления

Потребление энергоресурсов быстро растет, что вы­зывается непрерывным увеличением мирового промыш­ленного производства (рис. 1.4). Предполагается, что к 2000 г. потребление энергоресурсов составит 160-240 тыс. ТВт-ч (что соответствует условному топливу массой 20-30 млрд. т). Оставшихся после 2000 г.

Рис. 1.5. Графики изменения во времени мирово­го потребления различных энергетических ресур­сов, выраженных в условном топливе (фактиче­ское и ожидаемое)

Мировых запасов энергоресурсов без учета возможностей ядерной и термоядерной энергетики, видимо, хватит еще на 100- 250 лет. Эти данные, конечно, ориентировочны, однако все же они дают некоторую картину будущего. На рис. 1.5 приведены данные о мировом потреблении важ­нейших энергоносителей.

Общее мировое производство энергоресурсов, приве­денных к условному топливу, в 2000 г. составило около 20 млрд. т. В его структуре ведущее значение имеют нефть и газ, доля которых составляет 3 / 5 всего про­изводства энергоресурсов; 1/5 приходится на ядер­ное горючее; оставшуюся часть составляют твердые топли­ва (рис. 1.6).

Рис. 1.6. Структура мирового потребления топливно-энерге­тических ресурсов

Значительные изменения в структуре мирового топ­ливно-энергетического баланса произошли в 60-е годы.

Увеличилось относительное потребление жидкого и газо­образного топлива. Так, в 1970 г. доля нефти в общем мировом потреблении энер­гии составила 46%, а при­родного газа - 20 %.

До конца текущего сто­летия основной прирост энергопотребления будет обеспечиваться за счет при­родного газа, угля и ядерной энергии. В начале XXI в. ожидается увеличение доли возобновляемых источников энергии, таких, как энергия солнца, ветра, тепловая энергия земных недр и др. По предварительным оценкам, на долю таких источников энергии, включая ядерную, будет приходиться около 40% суммарного производства первичных энергоресурсов в СССР. Поэтому уже сейчас в нашей стране ведутся интенсивные теоретические и экспериментальные иссле­дования по эффективному освоению практически неис­черпаемых возобновляемых источников энергии.

Данные, оценивающие технические и экономические возможности использования энергии, меняются со вре­менем. Поэтому прогнозы, построенные на основе этих данных, следует рассматривать как ориентировочные, которые должны периодически корректироваться.

Интересно проследить эволюцию потребления раз­личных видов энергии начиная с доисторических времен (рис. 1.7, а). Мускульная энергия человека и животных, иногда называемая «биологической» энергией, некогда была единственным источником энергии. В настоящее время она составляет величину, меньшую 1% от общего потребления энергии (на рис. 1.7 не показана). Доля мускульной энергии будет уменьшаться и в дальнейшем. Это свидетельствует о том, что высокий уровень разви­тия производительных сил позволил человеку почти пол­ностью переложить на машины усилия по изготовлению необходимой продукции. Для того чтобы машины могли выполнять такую работу, человек на основе познанных им и практически используемых законов природы дол­жен был привести в действие огромные мощности, при­ложив их к средствам труда. Эти мощности современных орудий труда стали неизмеримо превышать ту макси­мальную мощность, кото­рая могла быть получена за счет биологических ис­точников.

Рис. 1.7. Характеристики энергетических ре­сурсов Земли и их использование:

а - схема исторического изменения различных ви­дов энергии, потребляемой человеком; б - диаграммы потребления различных источников первичной энергии в США; в - структура потребления энерго­ресурсов в СССР; г - структура использования в народном хозяйстве СССР органического топлива и ядерной энергии; д-прогноз мирового потребления горючих полезных ископаемых

Рис. 1.7. Продолжение

Первыми источниками теплоты были различные органические остатки и древесина. Древесина на протяжении длительного периода, вплоть до XVI в., была основным энергоно­сителем. Впоследствии, по мере относительно быстрого освоения других, более энер­гоемких источников энергии (угля, нефти), сокращалось потребление древесины, использование которой в каче­стве энергоносителя до 2000 г. практически полностью прекращено.

Среди доступных энергоресурсов наибольшая доля приходится на уголь (75-85%); значительны запасы нефти (10-15%) и газа (5-10%); все остальные энер­горесурсы в совокупности составляют менее 2%.

В начале XX в. уголь занимал наибольшую долю от всех используемых энергоресурсов. По мере увеличе­ния потребности в нефти, газе доля угля в выработке электроэнергии уменьшалась. На рис. 1.7,6 показана динамика потребления различных энергоресурсов в США, а на рис. 1.7, в - в СССР. Использование энер­гетических ресурсов для различных технических и тех­нологических нужд в СССР иллюстрируется рис. 1.7, г.

Начало 70-х годов характеризуется выравниванием потребления таких энергоресурсов, как уголь, нефть и газ, а в некоторых странах даже уменьшением (в аб­солютных цифрах) добычи угля.

Прогноз расходования мировых запасов органическо­го топлива (рис. 1.7, д) неоднократно служил поводом

Рис. 1.7. Продолжение

для высказываемых в западных странах опасениях об «энергетическом голоде», «тепловой смерти» и т. д., якобы ожидающих человечество. Однако для таких мрачных предсказаний нет оснований. Напротив, можно полагать, что на смену органическому топливу, запасы которого действительно уменьшаются, придут новые эф­фективные источники энергии и в первую очередь ядер­ная энергия, получаемая при делении тяжелых и синте­зе легких элементов. Органическое топливо будет приме­няться как ценное сырье для химической и фармацев­тической промышленности.

Разумное сочетание различных энергоресурсов и пла­новое развитие энергетики несомненно позволили бы избежать тех трудностей, приобретающих иногда катастрофический характер, которые возникли в начале 70-х годов в ряде капиталистических стран. Эти трудности, получившие в западных капиталистических странах и в США название энергетического кризиса, были вызваны многолетним хищническим использованием международ­ными монополиями сырьевых ресурсов стран и континен­тов. Так, международный нефтяной картель, состоящий из семи монополий (пять из которых американские), практически полностью контролировал добычу нефти в странах Арабского Востока и прочно захватил домини­рующие позиции на рынках государств - потребителей нефти. Этот картель в целях извлечения максимальных прибылей тормозил работы по использованию других видов энергии. В странах Западной Европы сокращалась добыча каменного угля, закрывались шахты, часто не­оправданно придерживалось развитие атомной энерге­тики.

Монополии, картели не останавливались ни перед какими средствами, чтобы сохранить свои позиции. В ряде стран, например, они давали огромные взятки, чтобы провалить законы о национализации энергетики (США) или дискредитировать и затормозить программу строительства атомных станций (Италия) и т. д.

Ориентация энергетики на нефть, дававшая монопо­лиям огромные прибыли, требует в перспективе значи­тельного увеличения ее добычи. В то же время, начиная с 1973 г., страны - производители нефтистали требо­вать все большую долю прибылей: они повысили на нее закупочные цены и заявили о намерении держать при­рост добычи нефти в определенных пределах, поставив тем самым развитые капиталистическиестраны перед необходимостью пересмотра их энергетической полити­ки. При этом в некоторых планах предусматривалось развитие атомной энергетики. Однако такого рода пере­ориентация энергетической политики сопряжена с мно­гими трудностями, такими, как необходимость получе­ния ядерного топлива, потребность в дополнительных капиталовложениях (которые трудно изыскать в услови­ях перенапряженных бюджетов развитых стран), недоверие общественного мнения по обеспечению безопасности атомных электростанций, сти­мулируемое конкурирующими фирмами. Между тем, раздуваемая печатью (особенно США) тема энергетиче­ского кризиса явно преувеличена. Все соображения и данные о мировых запасах энергоресурсов следует рас­сматривать как приближенные, так как пока еще недо­статочно изучены земные недра (обследована небольшая часть залежей на суше и практически не изучены ресур­сы топлива под дном Мирового океана), имеется не­удовлетворительного качества статистический материал о залегании энергоресурсов, в различных странах суще­ствуют разные методики учета запасов. В одних случаях исходят из общегеологических запасов, в других - из достоверных, подтвержденных геологической разведкой, в третьих-из запасов, которые могут быть извлечены исходя из экономических, географических, технологиче­ских и прочих условий. Общегеологические запасы топлива планеты оценивались специалистами примерно в 200 млн. ТВт*ч, а далее было показано, что с помощью современных технологических методов можно добыть при оправданных экономических затратах более 28 000 млн. ТВт*ч, что в 380 000 раз превышает современный уро­вень годовой добычи в мире всех видов топлива. Харак­терно то обстоятельство, что, несмотря на быстрое расхо­дование энергоресурсов, их потенциальные запасы по мере проведения разведки не уменьшаются, а увеличи­ваются.

Значительная доля энергетических ресурсов расхо­дуется на электростанциях для выработки электрической энергии, получившей в настоящее время широкое приме­нение.

Суммарная мощность электростанций в мире в на­стоящее время составляет примерно 2 млрд. кВт. На долю СССР приходилось более 300 млн. кВт, что состав­ляет 15% от мощностей электростанций мира или 16% от производства электроэнергии.

В результате технического прогресса, совершенство­вания орудий труда, средств транспорта, использования научных достижений в практических целях человечество освоило огромные электрические мощности, составляю­щие примерно 8-10 млрд. кВт. Если считать, что энер­гетические установки в среднем работают с КПД, равным 0,2, то для полу­чения освоенной полезной мощности требуется из­влекать природные энер­гетические ресурсы с мощ­ностью, равной 40- 50 млрд. кВт (8/0,2 = 40 и 10/0,2=50). Потребляемая

мощность в течение суток и года изменяется. Использование мощности характеризуется графи­ком, показанным на рис.

Рис. 1.8. График использования суммарной мощности энергетиче­ских установок

Заменяя реальный график условным прямоугольни­ком равновеликой площади, получим расчетный пара­метр - продолжительность (время) использования мак­симальной мощности Т м и определим используемую в мире энергию. Ориентируясь на меньший показатель, по­лучим

Э=40 млрд. кВт*5000 ч = 200*10 3 млрд. кВт*ч.

Выразим эту энергию в массе условного топлива.

Так как 1 т такого топлива содержит энергию, рав­ную 8000 кВт*ч, то, следовательно, для приведения в действие энергетических установок в течение года потре­буется

200*10 3 млрд. кВт*ч/8*10 3 кВт*ч/т = 25 млрд. т.

Полагая, что нашу планету населяют 5 млрд. чело­век, получим, что средний расход энергетических ресур­сов, приходящийся на долю каждого человека в течение года:

25 млрд. т/5 млрд. чел. = 5 т.

Инженеру-энергетику необходимо иметь хотя бы общее представление о мировых запасах топлива. Раз­личные виды топлива имеют существенно разные энерго­емкости, величины которых приведены в табл. 1.2.

Таблица 1.2

Рис. 1.9. Оценки мировых запасов угля:

а - на различных континентах; б - перспектива использования

Уголь. Мировые геологические запасы угля, выражен­ные в условном топливе, оцениваются в 12 000 млрд. т, из которых 6000 млрд. т относятся к достоверным. Наглядное представление о мировых запасах угля и перспективах их использования дает рис. 1.9. Наиболь­шими достоверными запасами располагают СССР и США. Значительные достоверные запасы имеются в ФРГ, Англии, КНР и ряде других стран. Современная техника и технология позволяют экономически оправданно добывать лишь 50% от всех достоверных запасов угля.

В энергобалансе СССР в начале 70-х годов произо­шли существенные изменения: ископаемые угли времен­но уступили занимаемое ими ранее первое место нефти и газу. Однако роль угля в снабжении народного хозяй­ства нашей страны источниками энергии в перспективе исключительно велика. Углепромышленные бассейны имеются в пределах РФ (Печорский, Кузнецкий, Канско-Ачинский, Иркутский, Подмосковный. Запасы угля мирового масштаба находятся в Во­сточной и Западной Сибири. Среди подсчитанных общих геологических запасов углей в СССР более 90% состав­ляют энергетические угли и менее 10%-дефицитные коксующиеся угли, необходимые для металлургии. Энер­гетические угли большой массы (202 млрд. т) имеются на площадях, пригодных для открытой разработки. Это, например, Канско-Ачинский бассейн в Восточной Сиби­ри, где имеются запасы бурых углей в мощных (от 20 до 40 м) пластах, залегающих на глубине менее 200 м от поверхности, и многие другие.

Более 90% общесоюзных запасов углей находится на территории, расположенной к востоку от Урала, а 60% добываемого в СССР угля потреблялось на Урале и в западных районах. Между тем, добыча угля в европей­ской части нашей страны достигает 50% от общей добы­чи. Перспективно использование запасов угля, располо­женных за Уралом. Особенно богато угольными бассей­нами пространство между Тургайской низменностью и озером Байкал до 60° с. ш., прилегающее к Сибирской и Южно-Сибирской магистралям.,это Кузнецкий, Минусинский, Кан­ско-Ачинский, Иркутский, Нерюнгринский и многие другие бассейны. В местах разработок полезных иско­паемых создаются новые промышленно-экономические районы и центры.

Дальность перевозки каменных углей из Казахстана на Урал и в Поволжье и полная нерентабельность транспортировки на значительное расстояние рыхлых и высокозольных сибирских бурых углей, а также нере­шенность задачи сверхдальней передачи электроэнергии заставляют обратить особое внимание на расширение площадей с энергетическими углями в старых углепро­мышленных районах и поиски новых месторождений на западе РФ. В этом отношении перспективны Донецкий и Печорский бассейны, обладающие реальными для ос­воения запасами энергетических углей.

Каменный уголь состоит из остатков флоры, существовавшей на Земле в геологические эпохи задолго на нашего времени. В ка­менноугольный период жизни поверхность планеты была обильно покрыта растениями. Многие из современных растений, такие, на­пример, как папоротники, в ту эпоху имели намного большие раз­меры. Каменный уголь образовался после отмирания растений и покрытия их осадочными породами.

Растения в период жизни запасают химическую энергию, пре­вращая за счет энергии солнечных лучей углекислоту и воду в ра­створимые углеводы, откладывая их в виде клетчатки в стволах и ветках. Белковые вещества в растениях получаются синтезом неор­ганических азотсодержащих веществ, поступающих из почвы, и органических веществ, выработанных за счет энергии Солнца. По выражению акад. П. П. Лазарева «...химическая энергия, запасен­ная в древесных породах, есть превращенная энергия Солнца» .

Если дерево сжечь в присутствии кислорода с образозанием углекислоты, воды и первоначальных азотистых соединений, то полученная при этом теплота будет отвечать энергии, доставленной растению Солнцем.

При сгорании каменного угля выделяется примерно 8,14 кВт*ч/кг (29,3 МДж/ /кг) энергии.

Нефть. Оценка миро­вых запасов нефти в на­стоящее время представ­ляет особый интерес. Это вызвано быстрым ростом ее потребления и тем, что во многих странах (Япо­нии, Швеции к др.) нефть при производстве электроэнергии вытеснила уголь (в последнее время этот процесс приостановился). На транспорте за счет нефти в настоящее время удовлетво­ряется свыше 90% мирового потребления энергии.

Рис. 1.10. Примерный состав каменного угля

Мировые геологические запасы нефти оцениваются в 200 млрд. т, из которых 53 млрд. т составляют достовер­ные запасы. Более половины всех достоверных запасов нефти расположено в странах Среднего и Ближнего Во­стока. В странах Западной Европы, где имеются высоко­развитые производительные силы, сосредоточены отно­сительно небольшие запасы нефти.

Оценки достоверных запасов нефти по своей природе динамичны. Их величина изменяется по мере проведения разведок новых месторождений. Геологические разведки, осуществляемые в широких масштабах, приводят, как правило, к увеличению достоверных запасов нефти. Все имеющиеся в литературе оценки запасов являются ус­ловными и характеризуют только порядок величин.

Быстрый рост потребления нефти определяется в ос­новном четырьмя причинами:

1) развитием транспорта всех видов и в первую оче­редь автомобильного и авиационного, для которых жид­кое топливо пока незаменимо;

2) улучшением показателей добычи, транспортировки и использования (по сравнению с твердым топливом);

3) стремлением в кратчайшие сроки и с минималь­ными затратами перейти к использованию природных энергетических ресурсов;

4) стремлением в промышленно развитых странах получить возможно большие прибыли за счет эксплуата­ции нефтяных месторождений развивающихся стран.

Несоответствие между расположением нефтяных ресурсов и местами их потребления или центрами про­изводительных сил привело к бурному прогрессу в раз­витии средств транспортировки нефти, в частности к созданию трубопроводов большого диаметра (больше 1м) и танкеров большой грузоподъемности.

Нефть была известна еще древним грекам и римлянам, которые называли ее питтолиумом. В VI в. до н. э. горючие газы, выделяю­щиеся из нефтяных источников на Апшеронском полуострове, дали повод к обожествлению вечного огня, в честь которого сооружа­лись храмы. Примерно в то же время жидкую нефть, разлитую по берегам Каспийского моря, использовали для освещения и лечения кожных болезней. В древности нефть, вытекающую из трещин в земле и нефтяных скважин, собирали в специальные ямы, из кото­рых она впоследствии забиралась для хозяйственных нужд.

По мере увеличения потребности в нефти, примерно с XVI в., стали вырывать специальные глубокие колодцы, откуда черпали нефть. Месторождения нефти представляют собой пористые пласты песчаника или известняка, пропитанные жидкостью. Сооружение колодцев в те времена было делом опасным. Колодец необходимо было рыть до пропитанного нефтью пласта, по мере приближения к которому нефтяные газы просачивались в колодец и делали не­возможным дыхание. Один из таких колодцев на Апшеронском полуострове сохранил надпись о том, что он сооружен в 1594 г.

С помощью колодцев нефть добывали до XIX в. Первая в мире нефтяная скважина пробурена в 1848 г. Ф. А. Семеновым в урочи­ще Биби-Эйбат на берегу Каспийского моря.

Нефть представляет собой бурую жидкость, содержащую в растворе газообразные и легколетучие углеводороды. Она имеет своеобразный смоляной запах. При перегонке нефти получают ряд продуктов, имеющих важное техническое значение: бензин, керосин и смазочные масла, а также вазелин, применяемый в медицине и парфюмерии.

Чтобы объяснить происхождение нефти, ученые пользовались результатами опытов, при которых производилось нагревание до высоких температур растений и остатков животных без доступа воздуха. В результате такого нагревания, называемого сухой пере­гонкой, образовывались углеводороды, сходные с углеводородами, заключающимися в нефти.

Предполагалось, что в древние времена существовавшие и умершие флора и фауна были покрыты осадочными породами на дне морей и океанов, которые образовались при опускании земной поверхности. Можно допустить, что опускание земной поверхности происходило до больших глубин, где органические остатки под дей­ствием теплоты Земли превращались в нефть. Такое воззрение со­ставляет основу биолого-геологической теории образования нефти, подтвержденной многочисленными исследованиями.

Природный газ. Мировые геологические запасы газа оцениваются в 140-170 трлн. м 3 . Распределение запа­сов газа по странам и районам приведено в табл. 1.4. Эти цифры следует рассматривать как весьма прибли­женные, изменяющиеся по мере проведения разведок.

Нефть и газ нужны не столько как энергетическое сырье, сколько как сырье для химической промышлен­ности. В настоящее время известно более 5000 синтети­ческих полезных продуктов, получаемых из нефти и газа, и число их ежегодно увеличивается. Однако пока только 3-5% от добытых запасов перерабатывается как химическое сырье. Нефтяные и газовые месторождения открываются на глубине и оцениваются только бурением глубоких скважин. Затраты на бурение составляют более 70% от затрат, расходуемых на проведение геоло­горазведочных работ.

Гидроэнергетические ресурсы. Гидроэнергия на Зем­ле оценивается величиной 32 900 ТВт*ч в год. Около 25% этой энергии по техническим и экономическим ус­ловиям может использоваться для практических нужд. Эта величина примерно в 2 раза превышает современ­ный уровень ежегодной выработки электроэнергии всеми электростанциями мира. В табл. 1.5 содержатся данные о гидроэнергетических ресурсах в различных странах. В большинстве развитых капиталистических стран доля гидроэлектростанций в выработке электроэнергии сни­жается, что обусловлено освоением других наиболее эко­номичных энергоресурсов и использованием гидростан­ций преимущественно в пиковых режимах.

Гидроэнергетический потенциал рек Советского Союза велик-4000 млрд. кВт*ч (среднего­довая мощность рек равна 450 млн. кВт), что составляет 12% от потенциала рек земного шара. В нашей стране широкое использование гидроэнергетических ресурсов впервые было предусмотрено в 1920 г. Ленинским пла­ном электрификации России (ГОЭЛРО). По этому пла­ну намечалось строительство 10 крупных по тому време­ни гидроэлектростанций (Волховская, Днепровская, Свирская и др.) с установленной мощностью 640 МВт. К 1941 г. мощность всех гидроэлектростанций составила 1,4 ГВт. В военные годы широко развернулось строи­тельство ГЭС в Средней Азии, а в послевоенные (до 1966 г.)- в северо-западных районах (Кольский полу­остров, Карелия, Ленинградская область и Эстонская ССР), в Закавказье, а также на Волге, Каме и Днепре.

В конце этого периода было начато строительство круп­нейших гидростанций в Сибири (Братской, Краснояр­ской, Усть-Илимской, Саяно-Шушенской).

В соответствии с основными направлениями разви­тия электроэнергетики нашей страны в 1986 г. выработ­ка электроэнергии на гидроэлектростанциях составила 230-235 млрд. кВт-ч при установленной мощности гид­роэлектростанций 65 млн. кВт.

Уникальные запасы гидроэнергии сосредоточены на реках Ангаре и Енисее; на них будет построено более 10 крупнейших ГЭС общей установленной мощностью 60 млн. кВт, среди которых предполагается сооружение Среднеенисейской и Туруханской станций с агрегатами до 1 млн. кВт установленной мощности.

Вода океанов и морей, испаряясь под действием солнечной ра­диации, конденсируется в высоких слоях атмосферы в виде капе­лек, собирающихся в облака. Вода облаков падает в виде дождя в моря, океаны и на сушу или образует мощный снеговой покров гор. Дождевая вода дает начало рекам, питающимся подземными источниками. Круговорот воды в природе происходит под влиянием солнечной радиации, благодаря которой появляются на­чальные процессы круговорот испарение воды и движение обла­ков. Таким образом, кинетическая энергия движущейся в реках воды есть, образно говоря, освобожденная энергия Солнца.

В отличие от невозобновляемой химической энергии, запасенной в органическом топливе, кинетическая энергия движущейся в реках воды возобновляема - на гидроэлектростанциях она превращается в электрическую энергию.

Энергия приливов и отливов. В последние годы повысился интерес научной и инженерной общест­венности к проблемам широкого использования энергии солнечной радиации, ветра, геотермальной энергии, а также приливной и термальной энергии Мирового океа­на. Явления приливов и отливов связаны главным обра­зом с положением Луны на небосклоне. Солнце также влияет на приливы и отливы, однако эффект его влияния примерно в 2,6 раза меньше. В течение лунных суток, т. е. за 24 ч 50 мин, дваж­ды наблюдается повышение и понижение уровня воды в морях и океанах. Амплиту­да колебаний уровня воды в различных точках земного шара зависит от широты и характера берега континента. Ее вели­чина может быть значительной: так, око­ло Магеланова пролива зарегистрирова­на амплитуда колебаний уровня воды 18 м, а около берегов Америки - 21 м. Приливы и отливы могут на многие ки­лометры, как, например, во Франции, ме­нять границу воды и суши.

В закрытых морях (Каспийском, Чер­ном) эффекты приливов и отливов прак­тически незаметны. Максимального уров­ня приливная волна достигает в тех слу­чаях, когда Земля, Луна и Солнце находятся на одной прямой (рис. 1.11).

Рис. 1.11. По­ложения Солн­ца, Луны и Земли, влияю­щие на прили­вы

Приведенные рассуждения следуют из тех пояснений, которые дал на основе гравитационной теории Ньютон. Вкратце они сводят­ся к следующему. Пусть на Землю в направлении ЬВ (рис. 1.12) действует сила притяжения Луны, которая создает ускорение Зем­ли из, направленное по прямой ЬВ. Ускорение воды, находящейся в зоне А, больше ускорения Земли, а ускорение воды, находящейся в зоне В, меньше ускорения Земли. Различие в ускорениях приво­дит к смещению массы воды, которое в преувеличенном виде пока­зано на рис. 1.12. При вращении Земли выпуклости воды переме­щаются относительно поверхности, создавая трение, называемое приливным и приводящее К замедлению вращения Земли. По отно­шению к атмосфере, окружающей Землю, также справедливы при­веденные рассуждения. Как показали исследования, в атмосфере действительно существуют прилив­ные волны. Энергия приливов по­стоянностью своего проявления выгодно отличается от энергии (стока) рек, существенно завися­щей от атмосферных факторов, носящих вероятностный характер. Об использовании энергии при­ливов еще издавна мечтал чело­век. Сотни лет назад на побережье Европы и Северной Америки со­оружались приливные мельницы. Некоторые из них и сейчас рабо­тают в Англии и во Франции. Водяные колеса таких мельниц уста­навливались при входе в бассейн и приводились во вращение те­чением воды.

Рис. 1.12. Характер распреде­ления воды по поверхности Земли под действием Луны

В настоящее время сооружено несколько мощных электростанций, использующих энергию приливов. Одна­ко большая стоимость таких станций и трудности, свя­занные с неравноме

Возобновляемые), а также гидроэнергия (ресурсы , неисчерпаемые) и др. Запасы энергии атомного распада и ядерного синтеза являются физически неисчерпаемыми.

Вплоть до начала XX в. основным энергетическим ресурсом на планете была древесина. Затем ее значение начало падать, и стал заметен первый «энергетический переход» - к широкому использованию угля. Однако на смену ему пришли добыча и потребление иных видов топлива - нефти и , использование ядерной энергии.

«Эра нефти» дала толчок интенсивному развитию экономики, что потребовало, в свою очередь, увеличения производства и потребления ископаемого топлива. Увеличивается количество потребляемой на планете энергии (причем в последние десятилетия потребность в ней удваивается каждые 13-14 лет).

Согласно последним данным Мирового энергетического совета (МИРЭС), доказанные извлекаемые запасы органического топлива в мире составляют 1220 млрд тонн «условного» топлива (т у. т.), тогда как конечные (общие) извлекаемые ресурсы, оценены весьма условно - в 4,5 раза больше. То есть доказанные запасы органического топлива достаточны для удовлетворения ожидаемого роста мирового спроса на них в течение многих десятилетий.

Общемировые запасы органического топлива слагаются в первую очередь из запасов угля (до 60%), нефти и газа (около 27%), причем все пересчитывается в эквиваленте «условного топлива». В совокупном мировом их производстве (т. е. добыче) картина по удельному весу энергоносителей складывается иная - на уголь приходится более 30%, а на нефть и газ - более 67% от общей добычи топливных ресурсов.

В общемировых разведанных (т. е. конечных извлекаемых) запасах выделяют еще достоверные (извлекаемые при современном уровне развития техники). В середине 1990-х гг. достоверные запасы нефти в мире определялись в 130-140 млрд т или 200 млрд т у. т. (а общие разведанные - в три раза больше), природного газа - в 140 трлн м3 (или 150 млрд т у. т.).

При этом только на долю стран, входящих в экономическую группировку (Организацию стран-экспортеров нефти), приходится около 77% мировых запасов нефти и 41% мировых запасов природного газа.
В 1960 г. мировая добыча нефти и газового конденсата составляла 1053 млн т, а природного газа - 454 млрд м3; в 1994 г. ее объем увеличился до 3000 млн т и 2215 млрд м3 (соответственно).

Обеспеченность текущей добычи нефти достоверными запасами в настоящее время определяется в целом по миру в 45 лет. При этом в странах крупнейших производителях нефти обеспеченность запасами выше среднего уровня. Так, при нынешних темпах разработки запасов и добыче нефти в (которая является одним из основных экспортеров этого ценного сырья в мире) ее хватит примерно на 90 лет. Эксперты полагают, что резервы истощатся приблизительно через 140 лет, - через 70 лет и т. д.

Единой системы учета запасов угля и его классификации по видам не существует, поэтому и статистические данные, публикуемые в разных изданиях, существенно различаются. Так, например, мировые ресурсы (конечные извлекаемые) каменного и бурого угля в середине 1990-х гг. оценивались МИРЭС в 4850 млрд т у. т. А доказанные извлекаемые запасы угля и лигнита оценивались в 870 млрд ту. т. (т. е. немногим более 1 трлн метрических тонн).

Наиболее крупными запасами всех видов углей из зарубежных стран обладают , КНР, . Более 90% достоверных запасов (извлекаемых с использованием существующих технологий) сосредоточено в США (1/4), на территории республик (более 1/5), КНР (1/5) и ЮАР.

Само же понятие «энергетический кризис» можно определить как напряженное состояние, сложившееся в результате несовпадения между потребностями современного общества в энергии и запасами энергоресурсов, в т. ч. вследствие нерациональной структуры их потребления.