Иммунный конфликт матери и плода, его основные формы и последствия. Иммунные нарушения - причина невынашивания беременности и бесплодия? Иммунологические взаимоотношения в системе мать отец

К обсуждаемым проблемам тесно примыкают иммуноэмбриолог: ческие вопросы, волнующие теоретическую и практическую мед: цину,- иммунобиологические взаимоотношения плода и органи ма женщины-матери. Медицина и эмбриология не могут полность объяснить ряд явлений. Почему в периоде внутриутробного ра вития и особенно на ранних стадиях развития зародыша челове* происходит гибель очень большого числа зародышей? С каких! факторами связаны ненаследственные заболевания и ранняя пос натальная гибель детей?
Среди различных факторов, обусловливающих указанные явл ния, большое внимание исследователей приковано к антигеннс реактивности. Каждый человек и каждое млекопитающее живо ное уникальны: в составе" клеток и тканей организма имеете огромное чцело различных антигенов. Относительное исключен* составляют близнецы. Также установлено, что антигенный состг клеток и тканей эмбрионов характеризуется огромным разнообр зием. Мать и эмбрион отличаются своими изоантигенами. Все т что сказано о значении антигенной реактивноти в явлениях н совместимости тканей при трансплантации, казалось бы, долж* относиться и ко взаимоотношению материнского организма и з, родыша. Однако в большинстве случаев взаимоотношения эти i перерастают в патологические процессы.
Таким образом, после имплантации бластоцисты и установл ния плацентарной связи плода и матери беременность продолж, ется, несмотря на то, что зародыш в антигенном отношении чуж роден материнскому организму. Почему «гомотрансплантат «паразит»-зародыш не отторгается? Па эти очень важные вопр сы при современном состоянии знаний ответить нельзя, гипотез а существует много.
В первые месяцы развития в крови зародыша человека мог; формироваться групповые и типовые антигенные факторы, сред них резус-фактор. Эритроциты большинства людей агглютинир ются сывороткой крови кроликов, иммунизированных кровь обезьян макака-резус, но эритроциты некоторых людей не аггл* тинируются. Резус-фактором называется антиген, ответственнь за выработку антител (при иммунизации кролика) и вызывающий агглютинацию эритроцитов у человека и обезьян. Обладающих этим антигеном называют резус-положительными (Rh+), а не обладающих - резус-отрицательными (Rh-). Резус-фактор определяется доминантным геном Rh, а отсутствие его - рецессивным геном rh. У 85% людей содержится этот фактор; их называют резус-положительными. У 15% людей этого фактора нет; их называют резус-отрицательными.
В чем суть болезни? Предположим, что эмбрион гетерозиготен по резус-фактору, он обладает способностью вырабатывать антиген, который через плаценту попадает в кровь матери. В крови резус-отрицательной матери против антигенов резус-положитель- ного эмбриона (унаследовавшего Rh+ от отца) вырабатываются антитела. Антитела, попадая в кровь эмбриона, вызывают у него частичную агглютинацию эритроцитов, что обусловливает анемию у ребенка.
Далеко не в ста процентах случаев происходит катастрофа вследствие несовместимости. Как правило, в случае Rh-несовместимости первый ребенок рождается нормальным, так как антитела у матери или не образуются, или титр их низкий. С каждой последующей беременностью может возрастать сенсибилизация матери, тем самым опасность выработки антител возрастает, а значит, и опасность для развития плода. Но сенсибилизация может не состояться. Выяснено к тому же, что не во всех случаях Rh-фактор отца передается ребенку. Если отец гомозиготен по Rh-фактору, то в этом случае все дети будут резус-положительными и вероятность гибели зародыша окажется наибольшей.
Существует мнение, что мать и плод постоянно находятся в состоянии взаимно иммунологической несовместимости. Зародыш, согласно этому взгляду, можно рассматривать как гомотрансплантат. Это созвучно очень смелой, крайне спорной идее, высказанной Б. А. Фаусеком. Он предполагал, что в ходе эволюции внутриутробного развития между организмом матери и зародышем создавались условия, характерные для явления паразитизма, и зародыш может быть уподоблен паразиту.
Как бы то ни было, действительно антигенная характеристика тканей зародыша и материнских тканей может оказаться существенно различной. Иммунологические реакции, возникающие в организме женщины (выработка антител, воспалительные процессы), могут оказаться факторами, приводящими к гибели яйцевые клетки и зародыш на стадии бластоцисты, приводить к самопроизвольному аборту, мертворождению или к возникновению гемолитической болезни и к другим заболеваниям.
Отмечено, что иммунная реакция на антигены, содержащиеся в тканях зародыша и плаценты, может обусловить развитие у беременной женщины заболевания токсикозом. Эти явления можно объяснить, если принять во внимание установленные факты о проницаемости плаценты как для клеточных элементов крови плод, так и для антител, содержащихся в материнской крови. Однак указанные патологические проявления иммунологической несlt; вместимости организма матери и плода - редкие исключения, они неизмеримо более редки, чем явления несовместимости ткане и органов при пересадках. Это требует своего объяснения, кг ковое и дается исследователями в виде различных гипотез. Tai думают, что во время беременности, в связи с изменением де5 тельности желез внутренней секреции, снижается иммунология! ская реактивность женского организма. Предполагают, что у мг теринского организма вырабатывается в связи с беременность] толерантное состояние в отношении антигенов тканей зародыш и он становится «ареактивным». Многие исследователи решающе значение придают барьерной функции плаценты и плодных обе лочек. Считают, что плацента - прочная перегородка между мг терью и плодом. Это, однако, противоречит ряду фактов. Некс торые иммунологи думают, что ткани плаценты могут избирателг но пропускать совместимые и задерживать несовместимы изоантитела материнской крови. Высказываются предположени и о том, что защита матери от антигенов плода и защита плод от антигенов матери обеспечивается благодаря антигенной нег тральности тканей плаценты.
Более детальное ознакомление с этими важными медико-эмС риологическими вопросами не входит в задачу общей эмбриолс гии. Л. С. Волкова (1970) на основе исследований пришла кслс дующему заключению. Несмотря на то, что между плодом материнским организмом, по-видимому, во всех случаях беремег ности происходит двусторонняя иммунологическая реакция и зг родыш может быть уподоблен гомотрансплантату, он, как правг ло, выживает во «враждебном» материнском организме. Сред многих причин выживаемости, вероятно, большое значение имее то, что клетки трофобласта, непосредственно контактирующи с материнскими тканями, вероятно, не имеют чужеродных дл материнских тканей антигенов. Между матерью и плодом пре исходит постоянный обмен клеточных элементов в незначителг ных количествах, что вызывает возникновение толерантности к не совместимым антигенам.
Изучая взаимодействие иммунологических факторов органи: ма матери, плода, плаценты, плодных оболочек и околоплодно жидкости, автор пришла к убеждению, что нормальное эмбрис нальное развитие обеспечивается своеобразной регуляцией кол! чества несовместимых элементов (изоантигенов, изоантител) кре ви матери и плода. Возможность такой регуляции обусловлен различной антигенной дифференцировкой пограничных межд матерью и плодом тканей и жидкостей и благодаря наличи] в околоплодных вЪдах большого количества групповых антигено] способных нейтрализовать антитела материнской крови.

При беременности, осложненной резус-сенсибилизацией или возникновением позднего токсикоза, групповая дифференцировка тканей плаценты, плодных оболочек и околоплодной жидкости нарушается: в них устанавливается «смешение» антигенных факторов, принадлежащих матери и плоду, или «исчезают» антигены, свойственные этим тканям и жидкостям. Эти изменения создают условия для более свободного проникновения к плоду материнских антител и для развития у него гемолитического заболевания.

1.3. ОСОБЕННОСТИ ИММУНИТЕТА В СИСТЕМЕ МАТЬ - ПЛАЦЕНТА - ПЛОД

Развитие и функция иммунной системы плода и новорожденного имеет характерные черты по сравнению с иммунитетом взрослого человека. Эти особенности основываются как на врожденных генетически обусловленных свойствах иммунитета, так и благодаря ограничению зародыша от внешней среды, осуществляемого плацентой как специфическим барьером.

Иммунобиологические особенности плаценты можно рассматривать с двух позиций: в связи с проблемой взаимоотношений плода и матери (аллотрансплантата плодного яйца в организме женщины) и в связи с иммунологической защитой плода от инфекций в системе мать - плацента - плод. В литературе к настоящему времени накопилось достаточно фактов, характеризующих механизм, обеспечивающий вынашивание плода гемохориальным типом плаценты, при которой зародыш непосредственно соприкасается с кровотоком матери.

Условия, определяющие иммунологическую толерантность матери по отношению к плоду, обусловлены совокупностью ряда особенностей строения и функции плаценты (Цирельников Н. И., 1980). Эти особенности можно разделить следующим образом: с одной стороны иммунологическая реактивность беременных связана с гормональными изменениями в системе мать - плацента - плод. Известно, что ряд белков, синтезирующихся в плаценте, действуют угнетающе на иммунологическую реактивность матери. Так, в частности, трофобласт синтезирует белок-супрессор, тормозящий общий иммунный ответ. Иммуноблокирующими свойствами обладают и другие белки (хорионический гонадотропин, плацентарный лактоген, а также прогестерон. Однако во время беременности общей иммуносупрессии не происходит).

В настоящее время до конца неясно, каким именно из белков плацентарной ткани или крови матери или плода принадлежит функция частичной или общей иммуносупрессии. Подавление функции лимфоцитов беременных осуществляется, в частности, α-фетопротеином, трофобластическим β-гликопротеидом. С другой стороны иммуномаскирующее действие оказывает щеточная кайма синцитиотрофобласта ворсин хориона, которая содержит кислые глюкозаминогликаны, сиаломуцин и другие гликопротеиды, которые своими гликидными компонентами молекулы снижают контакт иммунокомпетентных клеток с антигенными детерминантами плацентарных белков ворсин.

Кроме того, с помощью антисывороток к β 2 -микроглобулину, являющемуся основой антигенов, показано, что количество последних на ворсинках трофобласта резко снижено в отличие от мембран других клеток плаценты. Эта особенность тоже играет важную роль в антигенной толерантности ткани плода и матери.

В плаценте доказано наличие и других типов блокирующих факторов. Так, плацентарные элюаты ингибируют бласттрансформацию лимфоцитов in vitro, в том числе, розеткообразование, антителозависимую цитотоксичность и РБТЛ. Более того, в плацентарной ткани показано наличие специфических антилимфоцитарных антител. Высказана мысль о том, что плацента сорбирует эти антитела из крови матери, препятствуя их проникновению в кровь плода. При этом достигается двойной положительный эффект: устранение возможности сенсибилизации этими антителами лимфоцитов плода и усиление толерантности антигенов плода и матери.

Описан еще один механизм иммунологической депрессии лимфоцитов матери. Лимфоциты, изолированные из пуповины, ингибируют митотическое деление лимфоцитов матери. Это связывают с усиленной активностью супрессорной фракции Т-лимфоцитов ребенка. С их помощью плод защищен от воздействия материнских лимфоцитов, которые могут проникать трансплацентарно.

Часть белков, особенно гонадотропин, включается в процессы блокады антигенного распознавания плода в организме матери. Показано, что этот белок, концентрируясь на трофобластической мембране, слабо иммуногенен и не вызывает иммунологических сдвигов в организме матери. Гонадотропин обладает также функцией блокировать реакцию отторжения со стороны лимфоцитов матери.

Наиболее полно иммунологические механизмы сохранения беременности проанализированы в обзоре М. А. Пальцева с соавт. (1999). Весьма значительная роль в этом процессе отводится большим гранулярным лимфоцитам (БГЛ) и макрофагам децидуальной оболочки. Анализируя антигенные свойства этих клеток, основным маркером которых является CD56, авторы приходят к выводу, что их можно рассматривать как вариант NK клеток, филогенетически более древний, чем циркулирующий в крови.

В настоящее время доказана выраженная синтетическая активность БГЛ, продуцирующих КСФ-1, ГМ КСФ, γ-интерферон, ТФР, ФНО, IL-2, -6, -10 и вероятно другие вещества. Существенное значение имеет и межклеточная кооперация. В том числе имеются данные, что активация NK клеток происходит под влиянием продуцируемого трофобластом интерферона.

В обзоре С. А. Селькова с соавт. (2000) основное значение как в поддержании нормальной беременности, так и в наступлении срочных и преждевременных родов придается макрофагам. При этом профиль продуцируемых ими цитокинов при нормальном и патологическом течении беременности различен (IL-4, -5, -6, -9, -10 и γ-интерферон, ФНО, IL-2, IL-12 соответственно).

Начало сокращения мускулатуры матки связывается с выделением макрофагами IL-1, -6, -8 и простогландинов ПГЕ 2 и ПГЕ 2&aloha; . Установлено, что при нормальной беременности наблюдается постепенное нарастание уровня эстрогенов, достигающее самой высокой концентрации к моменту родов. При переношенной же беременности секреция эстрадиола снижена. Начало родового акта может быть стимулировано изменением уровней эстрогенов и прогестерона. В ранние сроки беременности оно составляет 1:80-1:120, а к 10 мес снижается до 1:1,2-1:1,3. Известно, что большая часть прогестерона образуется материнской частью плаценты. К концу беременности плацента синтезирует прогестерона в 3,5 раза больше, чем в середине беременности.

Синтезируемые плацентой хорионический гонадотропин и плацентарный лактоген также участвуют в регуляции родового акта. К концу беременности количество ХГ снижается, регулируя тем самым повышение эстрадиола в крови беременных. В то же время ХГ сам снижает тонус и сокращения матки.

Имеется определенная связь между перенашиванием и выработкой ряда гормонов плацентой. В схему активации родового акта включается также плацентарный лактоген (синергист хорионического гонадотропина). ПЛ достигает максимальной концентрации к 36 нед. беременности, а к началу родов снижается.

Известную роль в развитии родовой деятельности играет и окситоцин, снижающий мембранный потенциал мышечной клетки и изменяющий соотношение в ней ионов натрия и калия. С удлинением срока беременности активность фермента окситоциназы в плаценте и крови возрастает. Однако к моменту родов при нормальной беременности происходит резкое снижение его уровня, а количество окситоцина при этом увеличивается.

При перенашивании беременности наблюдается увеличение содержания фермента и уменьшение количества окситоцина. Эти процессы ведут к появлению при переношенной беременности процессов анаэробного гликолиза, накоплению ацидоза и энергетического дефицита. Это сопровождается повышением активности лактатдегидрогеназы, окислительных циклофераз и увеличением парциального давления СО 2 . Прослеживается однотипность некоторых обменных реакций перенашиваемости беременности и слабости родовой деятельности, говорящие, что механизмы этих осложнений имеют много общих закономерностей.

При нормальной беременности созревание плаценты ведет к максимальной выраженности трансплацентарной функции к 36 нед беременности, в дальнейшем скорость трансплацентарного обмена начинает снижаться. К концу первой половины беременности фетоплацентарный индекс составляет 3:1, а к моменту родов он увеличивался до 6:1.

Таким образом, иммунологический конфликт организма беременной и плода блокируется каскадом реакций, эффективно замещающих друг друга, и создающих по типу обратной связи невозможность отторжения плода даже при ряде неблагоприятных воздействий на него. Интересно, что основные механизмы толерантности в системе антигенной совместимости мать - плацента - плод, вероятнее всего, включаются и в другие процессы, влияющие на иммунологическую реактивность организма матери и плода.

В. Ф. Мельниковой (1992) показано, что инфекции в плаценте и, в частности вирусные, протекают со сниженными клеточными лимфоцитарными реакциями с переходом процесса во внутриклеточную персистентную форму. Сведений о роли плаценты при инфекции в системе мать-плацента-плод и иммунологических взаимоотношениях между матерью и плодом имеется несколько меньше. Связано это не только с трудностью диагностики инфекционных, особенно вирусных, поражений в ходе беременности, но и со сложностью оценки ряда иммунологических процессов в этом органе в ходе инфекции.

Вместе с тем очевидно, что механизмы воспаления и поддержания беременности имеют много общих черт. В этом отношении, на наш взгляд, можно выделить следующие, установленные исследователями, положения. Мембранные эффекты и энергетическая стимуляция посредством цАМФ, естественно активирует ряд защитных процессов в плаценте. Отмечено участие ЦН в реакциях гуморального иммунитета и аллергических реакциях, их противовоспалительное действие и связь действия ЦН с простогландинами. Одним из моментов регуляции иммунных реакций является, безусловно, воздействие цАМФ на мембранные процессы.

Необходимо остановиться также еще на одном механизме включения каскада системы цАМФ в процессе защиты плаценты и плода от инфекций. Активное функционирование аденилатциклазы и цАМФ в плацентарной ткани ведет к активации протеинкиназы, обладающей функцией фосфорилирования конечных участков, синтезируемых на рибосомах белков. В то же время установлено, что действие интерферона связано с активацией протеинкиназы. Двунитевые вирусные РНК являются своего рода катализатором для неактивной протеинкиназы. Такая активированная под действием двунитевых вирусных РНК протеинкиназа фосфорилирует среди прочих белков фактор инициации белкового синтеза на полисомах eI2, переводя его из активной формы в неактивную, что в свою очередь, блокирует синтез вирусных белков на рибосомах и образование полных вирусных частиц.

Показано, что ингибиция синтеза белков путем блокады фактора инициации более характерна для белков, которые транслируются через выработку информационных РНК in vitro. Установлено также, что этот процесс связан с транскрипцией иРНК на матрице клеточной ДНК. В то же время в плацентарной ткани повышено содержание цАМФ и, следовательно, активируется протеинкиназа.

Таким образом, через механизм цАМФ, возможно, исключается синтез активного противовирусного интерферона. Через плаценту происходит диффузия материнского иммуноглобулина и антител. Эти факты известны со времени обнаружения в пуповинной крови дифтерийного антитоксина в конце 19 века.

В настоящее время известно, что не все классы иммуноглобулинов переходят от матери через плаценту в плод. Показано, что антитела класса Ig M либо совсем не переходят через плацентарный барьер, либо переходят в минимальном количестве.

Иммуноглобулин Е также не проходит сквозь плаценту. В связи с чем пуповинная сыворотка не способна вызывать сенсибилизацию даже в том случае, если кровь матери содержит большие концентрации Ig E.

Внутриклеточная защита плода может осуществляться либо интерфероном, синтезируемым матерью, либо образующимся в плаценте или тканях плода. Интерферон при этом остается неактивным до развития инфекционного процесса в системе мать-плацента-плод. Для плаценты же целесообразно иметь противовирусную защиту, быстро развивающуюся внутриклеточно. В этом отношении каскад аденилатциклазы-цМФ-протеинкиназа-инактивированный фосфорилированием белок инициации вполне удовлетворяет этим требованиям. Доказательством общности этих процессов служат исследования по соотношению цАМФ в клетках, защищенных и не защищенных интерфероном.

Рядом исследователей было показано, что интерферон, будучи введен внутрь клетки специальными манипуляторами, не проявляет своей противовирусной активности. Вещества же, вмешивающиеся в мембранные процессы в клетке (амфотеррин В, ганглиозиды) изменяют активность интерферонного белка. С другой стороны, через 30 мин после обработки клеток интерфероном, в них происходит увеличение уровня цАМФ, который достигает максимума через 2 ч после сорбции интерферона.

Таким образом, наличие в плацентарной ткани высокого уровня цАМФ и протеинкиназы ускоряет создание противовирусной резистентности плацентарных клеток и пролонгирует противовирусный эффект на весь период нахождения РНК-овых компонентов вириона в клетках.

Установлено, что от матери к плоду передается только Ig G, причем уровни его в пуповинной крови у плода достигают концентраций, обнаруживаемых в крови матери. Принцип передачи данного класса иммуноглобулина и целесообразности данного процесса чрезвычайно важен, так как образование собственного Ig G у плода достаточно низко и даже на момент родов не превышает 1% от синтеза его матерью.

Вначале предполагалось, что трансплацентарная передача Ig G свойственна только гемохориальному типу плаценты. Однако, в дальнейшем выяснилось, что она определяется способностью клеток транспортировать пиноцитарные вакуоли с протеинами без их деградации в ходе данного процесса.

Ig M также имеет аналогичный тип передачи, но скорость диффузии вакуоли значительно медленнее, в связи с чем концентрация этого белка у плода низка. Физиологически это частично оправдано снижением проникновения к плоду изогемагглютининов матери, относящихся к этому классу.

Из всех белков плазмы Ig G имеет наибольшую скорость перехода от матери к плоду. Вместе с тем, показано, что прохождение белков через плаценту не зависит от молекулярной массы белка, а является результирующей скорости его сорбции на клетках плаценты, диффузии в плод, обратной диффузии к матери и степени деградации внутриклеточными протеазами.

Механизм транспорта Ig G имеет много общего с проникновением внутрь клетки протеинов высокой массы, а также ДНК и РНК вирусов и токсинов белкового происхождения. Молекула иммуноглобулина связывается с рецептором на синцитиотрофобласте. Расщепленный трипсином Ig G обладает способностью диффундировать сквозь плаценту. Не проходит сквозь плацентарный барьер и полученный с помощью пепсина fab-фрагмент Ig G.

Теория F. W. R. Brambell (1966) с последующими дополнениями, предполагает рецепторный транспорт Ig G через плаценту. Имеется два типа пиноцитарных везикул - крупные (макро-) и мелкие (микропиноцитарные). Показано, что малый тип вакуолей предназначен для селективного связывания молекул белков, в частности Ig G. Такая вакуоль проходит через цитоплазму клетки и выбрасывается из нее с помощью экзоцитоза.

На клетках человеческого трофобласта хориона обнаружили рецепторы для Fc-фрагмента иммуноглобулина. В настоящее время принято подразделять Ig G на несколько подклассов (Ig G 1-4). Их дифференцировка в практических условиях может быть осуществлена по анализу изменения титров антител в нативной сыворотке, после прогревания, после контакта со стафилококком, после обработки цистеином (табл. 1)

Таблица 1 Физико-химические свойства антител, соответствующие различным классам

Класс антител Наличие антител
в нативной сыворотке после прогревания после стафилококка после цистеина
Ig M +++ + +++ +++
Ig G-3 +++ +++ +++
Ig G-1-2 +++ +++ +
Ig G-4 +/- +/-

По данным О. А. Аксенова определение классов и подклассов антител в крови матери и плода позволяет с большой точностью определить время инфицирования и степень активности инфекционного процесса.

Первоначально весьма активно, но краткосрочно идет выработка Ig M, затем с задержкой примерно на 1 нед - Ig G -2 и в меньших титрах Ig G4, наиболее поздно и в небольших титрах происходит выработка Ig G3.

При обострении хронической инфекции наиболее ранняя и значительная реакция происходит со стороны антител Ig G3, несколько позднее, но весьма выражена реакция со стороны Ig Gl-2, реакция со стороны Ig M ранняя, но слабо выраженная, антитела класса Ig G4 реагируют умеренно и поздно.

В плаценте, особенно на базальной мембране трофобласта, обнаружена С3-фракция комплемента, в эндотелии стволовых сосудов выделена С6-фракция. Последняя является одним из конечных продуктов комплемента, приводящих к нарушению проницаемости сосудов и мембран, необходимых для доставки многих белковых субстратов к плоду.

При изучении прохождения сквозь плацентарный барьер различных подклассов Ig G установлено, что подкласс Ig G2 менее проходим через него, в то время как другие подклассы Ig G1, 3, 4 проникают к плоду без изменения концентрации. Это связано с меньшей сорбцией данного подкласса на трофобластических рецепторах.

Интересно, что подкласс Ig G2, по данным Р. В. Петрова (1983), не сорбируется на рецепторах моноцитов и К-клеток. Можно полагать, что в процессе филогенеза система мать-плацента-плод у человека приобрела способность задерживать проникновение к плоду того типа Ig G, которые могут вызвать повреждение развивающегося зародыша. В то же время ряд авторов не подтверждает это положение. По их данным соотношение подклассов IgG в пуповинной и материнской крови одинаково.

Полученные к настоящему времени данные показывают, что в развитии иммунной системы плода наблюдается поэтапное становление клеточного и гуморального иммунитета, как во времени, так и во взаимоотношении между собой. Дифференцировка клеток иммунной системы происходит с 3 по 6 нед внутриутробного развития зародыша. Первые лимфоидные клетки обнаруживаются в фетальной печени на 5 нед, а к 6-7 нед происходит образование тимуса. С 8-9 нед в этом органе наблюдается активный лимфопоэз, независимый от антигенного стимулирования. Дальнейшее развитие тимуса направлено на дифференцировку в нем двух видов лимфоцитов: иммунологически незрелых (имеющих на своей поверхности тимус-антиген) и зрелых, находящихся в мозговом слое органа. В дальнейшем происходит их миграция из тимуса в паракортикальную зону периферических лимфоузлов и периартериальную зону селезенки. Эти клетки обладают иммунологической активностью (типа зрелых Т-клеток). Они осуществляют реакцию "антиген против хозяина" и киллерную функцию против аллогенно или антигенно измененных клеток, появляющихся в организме плода.

Лимфатические узлы выявляются у зародыша на 12 нед развития. В то же время при неосложненной беременности плазматические клетки отсутствуют. Обнаружение их свидетельствует об антигенном стимулировании зародыша, чаще всего инфекционного характера.

Необходимо также остановиться на развитии компонентов системы комплемента, поскольку от нее зависит потенцирование различных иммунологических реакций, в том числе приводящих к разрушению клеток, выходу гистамина и т. д. Так, компонент Clq почти вдвое уменьшает число лимфоцитов, взаимодействующих с антигеном. В то же время он не влияет на клетки, синтезирующие антитела. При увеличении содержания фракции комплемента С1 и низком уровне антителосвязывающих лимфоцитов происходит снижение лимфоцитов супрессоров ГЗТ.

Таким образом, этот компонент комплементарной системы регулирует процесс перехода иммунного ответа с клеточного на гуморальный путь. Фракция С3 комплемента участвует в индукции гуморального ответа, в частности усиливает выработку противовирусных антител.

Еще в начале 70-х годов было показано, что белки системы комплемента матери не проходят через плаценту. Доказан синтез С3 и С4 фракций комплемента фетальной печенью, начиная с 15 нед внутриутробного развития. Несмотря на то, что собственный комплемент зародыша уже в 1 триместре беременности обеспечивает его биологические функции, все же суммарная активность его у плода значительно ниже, чем у матери. Вероятно, его недостаточное количество ведет к снижению клеточного иммунитета плода.

Важным рубежом в становлении иммунных процессов является 20 нед гестации, когда начинается функционирование собственных механизмов иммунитета, в частности начало синтеза собственного Ig M. В то же время в околоплодных водах появляется выраженная антибактериальная активность, обусловленная наличием лизоцима, β-лизина, трансферрина, интерферона и т. п.

Среди исследователей долгое время сохранялось представление, что человеческий зародыш при нормальных условиях не синтезирует собственные иммуноглобулины, а их наличие у плода и новорожденного в течение первых месяцев постнатальной жизни обусловлено трансплацентарной передачей от матери. Это положение полностью совпадало с тем, что в норме у плода не обнаруживаются плазматические клетки, которые появляются лишь через несколько недель после рождения. Однако, они обнаруживаются у плода при инфекционном процессе, в частности при микоплазмозе и сифилисе.

С помощью ИФ и радиоиммунного методов была установлена возможность синтеза Ig M и Ig G иммунокомпетентными клетками при патологических состояниях плода. Синтез Ig M иммунокомпетентными клетками селезенки и тимуса начинается с 12 нед внутриутробного развития зародыша. Выработка Ig G появляется у плода с 12 нед в фетальной печени, селезенке и мезентериальных лимфатических узлах. Увеличение его содержания, начиная с 26 нед объясняется в основном транс плацентарной передачей.

Синтез Ig G выявлен в вилочковой железе и плаценте, начиная с 14 нед Ig A начинает синтезироваться зародышем с 13-14 нед, в основном в кишечнике и обнаруживается в околоплодных водах вплоть до рождения ребенка.

В отдельных работах показана возможность синтеза плодом Ig E при попадании аллергена, преодолевшего плацентарный барьер. Этот иммуноглобулин в основном синтезируется в легких и селезенке.

Синтез плодом собственных иммуноглобулинов, особенно Ig G свидетельствует о функционировании В-клеточной лимфоцитарной системы.

Известно также, что с 12 по 14 нед увеличивается число лимфоцитов с мембранными иммуноглобулинами. На этих клетках имеются рецепторы для комплемента. Все это доказывает, что низкий синтез иммуноглобулинов плодом является результатом меньшей антигенной стимуляции плода. Более того, установлено, что внутриутробно происходит процесс созревания лимфоцитов, независимый от антигенного раздражения.

При дефекте В-клеток отмечается их неспособность к трансформации в плазматические клетки. Во многих случаях антигены различных возбудителей стимулируют дифференцировку В-клеток, но не вызывают инфекционного процесса в организме плода.

Синтез молекулы антитела - энергетически зависимый процесс, поэтому более целесообразно получение плодом от матери готового антитела в виде Ig G. Главным биологическим смыслом передачи антител от матери к плоду является немедленная пассивная защита от заражения патогенными микроорганизмами. Барьерная функция плаценты замедляет распространение инфекционного процесса в системе мать-плацента-плод, поэтому появившиеся через 5-6 дней после инфицирования Ig G успевают проникнуть через плаценту раньше, чем возбудитель.

Клеточная Т-зависимая система иммунитета зародыша выполняет ряд функций, защищая его от инфекций, а также разрушая материнские лимфоциты, способные вызвать реакцию отторжения трансплантата. Установлено, что уже в 1 триместре тимус содержит до 90-95% розеткообразующих клеток - Т-лимфоцитов. Резкое увеличение этих клеток происходит к 11-12 нед беременности, к этому же времени происходит дифференцировка лимфоцитов на хелперы и супрессоры. Их функциональная активность находится на уровне клеток взрослого. Так РБТЛ достаточно выражена уже на 10 нед беременности. Пролиферативная же реакция на митогены (клеточные растворимые и инфекционные антигены) в лимфоцитах печени развивается раньше (на 7-8 нед).

Одной из важных функций Т-лимфоцитов является их киллерная функция, осуществляемая NK- и К-клетками. Показано, что цитотоксическая активность NK-клеток обнаруживается уже на 14-15 нед развития. Кроме того, установлена активация Т-клеток с помощью 5 фракции тимозина. Другим активатором Т-лимфоцитов является IL-2, усиливающий пролиферацию этих клеток.

Рождение ребенка приводит к радикальному изменению его иммунитета. С иммунологической точки зрения - это прекращение действия защитного барьера матери, столкновение ребенка с множеством чужеродных антигенов, включая микробные и вирусные. Вместе с тем исчезает трансплацентарный путь передачи защитных факторов от матери.

Установлено, что активность лейкоцитов новорожденных снижена по сравнению с детьми более старшего возраста. Это связано с низкой миграционной активностью лейкоцитов, обусловленной дефицитом клеточных эстераз, которые включаются в процесс метаболизма сложных мембранных эфиров, необходимых для миграции клетки. При этом отмечается низкая опсонизирующая активность сывороток, которая обусловлена низким содержанием у новорожденного Ig M и комплемента.

В настоящее время установлено, что в течение первых месяцев постнатальной жизни происходит снижение уровня материнского Ig G и постепенное нарастание собственных иммуноглобулинов этого класса. Выявлено повышенное содержание В-лимфоцитов у новорожденных в пуповинной крови по сравнению со взрослыми.

Недостаток синтеза иммуноглобулинов у новорожденных компенсируется клеточными механизмами иммунного ответа. Показано, что Т-лимфоциты новорожденных способны вырабатывать различные лимфокины, включая интерферон, и реагировать на стимуляцию ФГА. Однако, цитотоксичность их резко снижена.

Иммунологические аспекты перинатальных инфекций складываются из особенностей развития ребенка в этот период (контакт его с различными инфекционными возбудителями и антигенами) и постепенно снижающимся материнским иммунитетом. Состояние иммунитета беременной существенно не нарушается. Создается парадоксальный эффект - плод не отторгается как аллотрансплантат, благодаря блокаде клеточного иммунитета по отношению к его тканям. Однако в отношении других антигенов организм матери отвечает обычными иммунными реакциями.

Установлено, что иммунный ответ на HLA-антигены (в том числе отца) возрастает во время беременности и снижается к моменту родов. Активность же NK-клеток в первом триместре наиболее высокая, а затем постепенно снижается. Прогрессирующее возрастание их активности наблюдается при гестозах второй половины беременности.

В настоящее время широко распространена точка зрения, что в патогенезе поздних гестозов основное значение имеет нарушение толерантности аллогенной фенотипической системы. Среди других фактов важную роль отводят усилению киллерной активности лимфоцитов, что может быть связано с различными факторами, в том числе инфекциями.

В. В. Иванова с соавт. (1987) получила достоверную связь между тяжестью гестоза, высоким процентом мертворождений, преждевременных родов и вирусных инфекций в системе мать-плацента-плод. Они делают вывод о роли вирусных инфекций в развитии гестозов, при которых поражение плода не всегда сочетается с манифестной инфекцией матери.

Следует отметить низкие уровни Ig M у плодов и новорожденных и непроницаемость плацентарного барьера для материнских антител этого класса. В то же время они являются определяющими в защите организма. В. В. Ритова и соавт. (1976) считает, что развитию инфекции у плода и новорожденного способствует состояние иммунологической толерантности и дефектность иммунной системы плода в отношении синтеза антител Ig M при инфицировании за 2-4 нед до родов. Авторы полагают, что внутриутробные вирусные инфекции, возникшие в этот период протекают без включения антительного компонента.

Важное значение имеет и то обстоятельство, что Ig A не проходит через плацентарный барьер, а синтез собственного Ig A снижен. Этим объясняют тяжелое течение респираторных и кишечных вирусных инфекций в периоде новорожденности. Необходимо также подчеркнуть и тот факт, что период полураспада иммуноглобулинов составляет для Ig G - 20-24 дня, для Ig A - 5,8 дня, а для Ig M - 4,1 дня. Вполне вероятно, что плоду трансплацентарно передаются не только антитела, но и сигнал для синтеза антител в виде лимфоцитов "памяти".

В настоящее время получены данные и о других защитных механизмах в системе последа. Так показано, что размножение микроорганизмов в амниотической жидкости приводит к повышению уровня липополисахаридов, которые, активируя деятельность фетального трофобласта, приводят к усиленному синтезу ими IL-1, IL-6, IL-8, IL-10, TNF, активно участвуют в развитии воспалительных и иммунных реакций в системе мать-плацента-плод (О. А. Пустота на, Н. И. Бубнова, 1999). Так Е. Paradovska et al. (1996) в эксперименте на органной культуре плаценты и амниотических оболочек показали защитную роль TNF по отношению к инфекциям, вызванным вирусами простого герпеса 1 типа, энцефаломиокардита и везикулярного стоматита.

Важное значение в защите плаценты от биологических возбудителей придается экспрессии антигенов большого комплекса гистосовместимости (HLA 1 типа). Наиболее широко распространенные антигены этой группы - HLA-A, HLA-B, функционально тесно связанные с NK-клетками, на поверхности цитотрофобласта не экспрессированы. В качестве важнейшего антигена этой локализации рассматривают HLA-G, внутриклеточный транспорт которого блокируется вирусом простого герпеса (Schust D. J. et al., 1996).

Начато изучение протективного действия в репродуктивных тканях женщины дефензинов. В работе D. M. Svinarich et al. (1997) показано, что в эндоцервиксе, эндометрии и хорионе может быть обнаружена транскрипция дефензина 5. Среди цитокинов, связанных с длительно текущей генитальной инфекцией, в частности вызванной Chlamydia trachomatis в эксперименте у мышей, S. J. Blander, A. J. Amortegui (1997) важное значение придают IL-5 (основному цитокину, ответственному за эозинофилию), уровень которого повышается через 5 недель после первичной инфекции.

В настоящее время среди факторов противоинфекционной защиты существенное значение придается также интерферону. Интерферон, открытый Isaaks и Lindenmann в 1957 году, как антивирусный фактор, в настоящее время хорошо изучен. Установлено существование целой группы соединений - интерферонов, являющихся низкомолекулярными белками (молекулярная масса от 10 до 150 тыс. дальтон), обладающих свойствами неспецифической защиты клетки от чужеродных синтезов, в частности от размножения в клетках вирусов, хламидий, микоплазм - возбудителей с внутриклеточным характером размножения.

В настоящее время интерфероны относят к интерлейкинам. Известны три типа интерферонов: альфа (α), бета (β) и гамма (γ). Интерферон типа α-кислотостабильный низкомолекулярный белок (масса 10 тыс. Д), основной его функцией является внутриклеточная защита за счет выработки в клетке ряда белков и низкомолекулярных структур, блокирующих на рибосомах синтез de novo белков и ядерный синтез чужеродных нуклеиновых кислот.

Кроме того, α-интерферон стимулирует появление на мембранах группы специфических рецепторов, обладающих защитным действием, путем изменения мембранной проницаемости, а также активации различных клеточных рецепторов, включая рецепторы гистосоместимости.

β-интерферон-кислотолабильный белок (масса 20-40 тыс. Д) один из наименее изученных интерферонов, был впервые получен экспериментально в культурах опухолевых клеток и в настоящее время считается разновидностью β-интерферона, вырабатываемого в организме местно клетками различных органов. В связи с наличием в клетках разных органов большого числа рецепторов для β-интерферона, он практически не выходит в лимфу и кровяное русло, являясь по сути местным интерфероном.

γ-интерферон-кислотолабильный белок (масса 130-150 тыс. Д) представляет собой интерлейкин, в функции которого входит стимуляция ряда других интерлейкинов, усиливающих передачу информации с макрофагов на Т-лимфоциты в процессе стимуляции иммуногенеза. В связи с этим биологические функции этого типа интерферона весьма многообразны, включая антивирусное и антимикробное действие, антионкогенный эффект, антителостимулирующий эффект, действие на клеточный рост и дифференцировку.

В системе мать-плацента-плод интерфероны вырабатываются организмом матери, плодом и последом. Интерфероны, синтезируемые в организме матери имеют свойства, и α, β и γ. Их уровни могут изменяться в зависимости от инфекции, переносимой женщиной во время беременности. Они выполняют защитную функцию. Альфа и бета интерфероны, имеющие низкую молекулярную массу, все же не проникают через неповрежденный плацентарный барьер. Вероятно, это связано с его избирательной проницаемостью для интерферонов, которые являются антагонистами гормона роста. Не исключено, что малый вес плодов, страдающих внутриутробными инфекциями, в какой-то мере обусловлен и тормозящим воздействием интерферона.

В то же время синтез гамма-интерферона в организме матери задержан в связи с его более выраженным по сравнению с α-интерфероном эффектом на Т-киллеры, в том числе их способность усиливать реакцию иммунного отторжения в системе свой - чужой.

Интерфероны синтезируются также клетками плаценты. В ткани плаценты определяются три различных по своим свойствам типа интерферонов: α, γ и особый плацентарный интерферон. Установлено, что присутствие интерферонов в плаценте связано с имеющимся в ней инфекционным процессом, в первую очередь обусловленным вирусами и другими возбудителями, для которых характерно внутриклеточное размножение (микоплазмы, хламидии).

В литературе имеется лишь небольшое число работ, указывающих на наличие интерферона в плаценте. Прежде всего это экспериментальные работы на мышах и крысах, в которых прослежено наличие α-интерферона в различные сроки беременности. Однако, сведения о его роли в барьерной функции органа практически отсутствуют.

В отдельных исследованиях показана способность α-интерферона защитить плод от внутриутробной герпетической инфекции (Zdravkovic M. et al., 1997).

Функциональная система мать - плод

От плода в различные периоды внутриутробного развития исходят многочисленные сигналы, посылаемые через различные системы его организма, которые воспринимаются соответствующими системами матери и под влиянием которых изменяется деятельность многих органов и функциональных систем материнского организма.

Вся деятельность организма женщины во время беременности должна быть направлена на максимальное обеспечение нормального развития плода и поддержание необходимых условий, обеспечивающих развитие плода по заданному генетическому плану.

Ведущее значение в осуществлении восприятий импульсов, поступающих в материнский организм от плода, принадлежит нервной системе; При беременности нервные окончания матки (рецепторы) первыми начинают реагировать на многочисленные раздражения; поступающие от растущего плодного яйца.

Наибольшие изменения во время беременности претерпевает центральная нервная система (ЦНС). Начиная со второй половины беременности происходит прогрессирующее усиление тормозного процесса в Коре головного мозга, которое достигает своего максимума к моменту родов

При появлении различных стрессовых ситуаций (страх, волнения, сильные переживания и пр.) в ЦНС беременной могут возникать другие очаги стойких возбуждений, что ослабляет действие доминанты беременности. А это в свою очередь нередко приводит к патологическому течению беременности и нарушениям развития плода. Именно поэтому всем беременным женщинам необходимо по возможности создавать оптимальные условия психического покоя как на работе, так и в домашних условиях.

Наряду с изменениями в ЦНС большие изменения во время беременности происходят в эндокринном аппарате женщины.

В течение первых 4 мес беременности в яичнике функционирует желтое тело, которое вырабатывает большое количество прогестерона, а также эстрогенов. Прогестерон способствует накоплению в децидуальной оболочке необходимых питательных веществ, ферментов и других важных веществ, необходимых для правильного развития эмбриона и плода. Кроме того, прогестерон расслабляет матку и тем самым предотвращает нежелательное воздействие на нее сокращающих веществ. После 4 мес в связи с обратным развитием желтого тела задача продукции прогестерона переходит к плаценте.

Большое значение в осуществление физиологических взаимоотношение системы мать - плод имеют изменения обмена веществ, наблюдаемые при беременности. Не существует ни одного вида обмена веществ, который бы в той или иной мере не изменялся во время беременности. Изменения белкового обмена характеризуются накоплением в организме беременной белковых веществ, которые являются пластическим материалом для построения тканей и органов плода. Накопление белковых веществ в материнском организме необходимо в основном для роста и развития матки и молочных желез - органов, которые во время беременности достигают наибольшего развития.

Значительным изменениям подвергается и обмен жиров. Отмечается повышенное отложение жира на бедрах, животе, в области молочных желез. В крови беременных отмечается увеличение концентрации нейтрального жира и холестерина. В крови плода липидов содержится в 1½-3 раза меньше, чем в крови матери. Накопление жиров в организме матери и плода необходимо для создания запасов энергии. Расход энергии особенно велик в родах.

Существенные изменения происходят и в обмене углеводов. Углеводы (в основном в виде гликогена) в повышенных количествах откладываются в печени матери и плода, в плаценте, в матке. Из организма матери углеводы (в основном в виде глюкозы) переходят к плоду. Глюкоза необходима плоду прежде всего для поддержания процессов так называемого анаэробного гликолиза - специфического процесса существования плода.

Существенные изменения происходят в водном и минеральном обмене во время беременности. Беременность сопровождается выраженной задержкой жидкости в организме женщины.

Повышенное количество жидкости жизненно необходимо плоду. Водная среда играет важнейшую роль в трансплацентарном переходе всех питательных веществ от матери к плоду и в выведении из организма плода продуктов обмена веществ. Вода необходима для образования амниотической жидкости. Большое количество воды содержится в организме плода и в плаценте.

Значительные изменения претерпевает электролитный обмен при беременности. В процессе развития плода возрастают его потребности в солях кальция, калия, фосфора, магния и железа. Соли кальция и фосфора необходимы плоду для построения скелета и других тканей. При дефиците этих солей в материнском организме у беременной начинают расходоваться депо этих соединении, что проявляется разрушением скелета и зубов. Соли фосфора, крометого, необходимы для построения нервной системы плода.

Во время беременности расходуется значительное количество железа, что связано с процессами синтеза гемоглобина у плода. Уменьшение содержания солей железа в материнском организме сопровождается развитием во время беременности железодефицитной анемии.

Большое значение для установления правильных взаимоотношений системы мать - плод имеет обмен витаминов. Витамины необходимы для физиологического течения беременности, правильного роста и развития плода, подготовки к родам и для дальнейшего развития новорожденного. Во время беременности средняя суточная потребность почти во всех витаминах возрастает в 2 раза и более. Поэтому для поддержания витаминного баланса на должном уровне во время беременности необходимо обеспечить повышенное поступление витаминов с пищей, а также в виде лечебных препаратов.

При беременности повышается нагрузка на все органы и системы материнского организма. Происходят выраженные сдвиги со стороны дыхательной, сердечнососудистой, пищеварительной и выделительной системы материнского организма. Эти изменения имеют физиологический характер и направлены на удовлетворение растущих потребностей плода.

Начиная с первого триместра беременности наблюдается увеличение минутного объема дыхания. А это в свою очередь обусловливает лучшее снабжение плода кислородом.

Существенным физиологическим изменениям подвергается и функция сердечнососудистой системы во время беременности. Начиная с первого триместра происходит заметное увеличение объема циркулирующей крови

Эти изменения сердечной деятельности беременной обеспечивают правильное функционирование маточно-плацентарного кровообращения и потребности растущего плода в кислороде и необходимых питательных веществах.

Во время беременности наблюдаются многообразные изменения со стороны пищеварительной системы, обеспечивающей непрерывное поступление в организм плода необходимых ему веществ.

Это касается прежде всего печени. Нормально развивающаяся беременность предъявляет повышенные требования к этому органу, поскольку растущий плод нуждается во все возрастающем количестве питательных веществ. В то же время от плода к матери поступают продукты его обмена, которые выводятся затем через материнский организм

Определенное напряжение во время беременности испытывает выделительная система матери. Снижается тонус мочевыводящих путей, возрастает емкость мочевого пузыря, что связано с воздействием прогестерона желтого тела, а затем и плаценты. Изменяется и функциональная активность почек, отмечается возрастание клубочковой фильтрации на 40-50% по сравнению с таковой у небеременных женщин. Усиленная функция почек способствует повышенному выделению с мочой продуктов обмена не только матери, но и плода.

Особого внимания во время беременности заслуживает иммунная система, поскольку возникшие изменения способствуют удержанию в матке гомотрансплантата (плод). Современными исследованиями установлено, что антигенная активность плода возникает постепенно.

Установлено, что все иммунные системы материнского организма находятся в состоянии некоторого торможения.

Иммунологические взаимоотношения между организмами плода и матери достигают такой выраженности, что зрелый и доношенный плод начинает изгоняться из матки в результате развития маточных сокращений.

До настоящего времени мы в основном рассматривали изменения, которые возникают в организме матери при беременности и которые в той или иной степени оказывают свое воздействие на плод.

Плод генетически, а следовательно и иммунологически, чужероден орга­низму матери из-за наличия в его геноме отцовских генов. Таким образом, он фактически представляет аллотрансплантат, который в соответствии с законами иммунологии должен быть отторгнут.

Однако сам факт существо­вания плацентарных животных свидетельствует о том, что в данном случае непреложные законы иммунологии каким-то образом удается обойти. Более того, судя по осложнениям, возникающим при беременности сингенным плодом (такое возможно в экспериментах с генетически чистыми линиями животных), генетические различия матери и плода даже благоприятствуют нормальному развитию беременности.

Различия между матерью и плодом по генам гистосовместимости играют важную роль, о чем свидетельствуют данные о зависимости размера плацен­ты от степени таких различий. При развитии сингенного плода плацента имеет минимальный объем, по мере усиления различий по генам гистосов­местимости ее размер увеличивается, а при предварительной иммунизации самки антигенами полового партнера размер плаценты плода превышают нормальный.

Предположение о слабой экспрессии в тканях плода антигенов гис­тосовместимости в силу «иммунологической незрелости» было довольно быстро отвергнуто, поскольку обнаружено, что в тканях плода антигены МНС экспрессируются уже на ранних стадиях эмбриогенеза. В конечном счете общепринятым стало представление о плоде как своеобразном имму­нологически привилегированном органе. Природа этой привилегирован­ности до сих пор до конца не раскрыта, но очевидно, что она совершенно уникальна, хотя и полностью вписывается в известные иммунологические закономерности. В значительной степени привилегированное положение плода обусловлено структурой плаценты и наличием или отсутствием в ней иммунологически значимыми факторов (рис. 4.19).

Особенности экспрессии антигенов гистосовместимости в трофобласте

Одним из важнейших механизмов защиты плода от атак со стороны иммунной системы матери признают наличие барьера в виде трофобласта (части плаценты, относящейся к организму плода), не экспрессирующего молекулы МНС. Отсутствие в нем молекул МНС-11 не вызывает удивле­ния, поскольку их тканевое распределение ограничено. Однако молекулы МНС-1 экспресируются всеми ядросодержащими клетками организма, и их отсутствие на клетках трофобласта привлекает особое внимание.








Молекулы МНС-1 - Н^А-А и Н^А-В отсутствуют на клетках внешней оболочки - синцитиотрофобласта, а также на клетках ворсинчатого цито- тотрофобласта. Молекулы Н^А-С на клетках трофобласта экспрессиру­ются. Биологический смысл этого «исключения из правила» пока неясен. В трофобласте выявлены особенности транспорта цитозольных пептидов, препятствующие их встраиванию в молекулы МНС, без чего невозможно формирование стабильной молекулы МНС-1. Таким образом, механиз­мы, препятствующие экспрессии молекул МНС-1 на клетках трофобласта, связаны с посттранскрипционным уровнем формирования макромолекул. Показано, что экспрессия молекул МНС-1 на клетках трофобласта блоки­рована настолько надежно, что не индуцируется даже при действии интер- феронов.

В то же время на клетках цитотрофобласта, особенно ворсинчатого, выявлены «неклассические» молекулы МНС-1, относимые к подклассу 1Ъ - Н^А-Е и Н^А-0, в меньшей степени - Н^А-Р. Для этих молекул характерен ограниченный полиморфизм и, по-видимому, они не участву­ют в презентации антигенов. Зато их распознают ингибиторные молекулы NК-клеток, а также у5Т-клеток и некоторых других лимфоцитов: молекулу Н^А-0 распознают рецепторы ^I^КВ1, а Н^А-Е - рецетпоры С^94/NКО. Распознавание обусловливает генерацию сигналов, блокирующих цито- литическую активность лимфоцитов и другие проявления их активности. В результате альтернативного сплайсинга формируется несколько изоформ молекул Н^А-0; изоформы 1-4 связаны с мембранами, изоформы 5-7 сек- ретируются в среду и также выявляются в плаценте. Спектр клеток трофо­бласта, вырабатывающих растворимую форму Н^А-0, шире спектра клеток, экспрессирующих мембранную форму этой молекулы. Как мембранные, так и растворимые (особенно О5) изоформы молекулы Н^А-О способны бло­кировать активность лимфоцитов, несущих соответствующие рецепторы, прежде всего естественных киллеров. Зарегистрировано подавление под влиянием Н^А-О способности цитотоксических лимфоцитов секретиро- вать №N7 и усиливать секрецию ТОРр.

Таким образом, важный механизм, предотвращающий отторжение плода как аллогенного трансплантата - особый характер экспрессии молекул МНС-1 на клетках трофобласта (отсутствие экспрессии классических моле­кул МНС, представляющих антигенный пептид, и экспрессия или секреция молекул, блокирующих активность естественных киллеров), что предотвра­щает сенсибилизацию организма матери антигенами плода и обеспечивает блокаду естественных киллеров.

Тем не менее, есть многочисленные свидетельства того, что до иммунной системы матери доходят иммуногенные сигналы от плода, о чем свидетель­ствует накопление в сыворотке рожавших женщин антител против Н^А и других антигенов плодов, причем уровень и разнообразие этих антител возрастает с увеличением числа беременностей. Признаки сенсибилиза­ции к антигенам плода проявляются и на Т-клеточном уровне. Однако эта сенсибилизация в норме не приводит к развитию реакции отторжения. Это обусловливает необходимость рассмотрения состояния различных звеньев иммунной системы матери, а также околоплодных оболочек - как материнских, так и плодных. Нет сомнений, что некоторые особенности иммунологической реактивности матери обусловлены эндокринными пере­стройками. Прогестерон, хорионический гонадоторопин и другие гормоны, уровень которых повышается при беременности, способствуют сдержива­нию реакций, направленных на отторжение плода, однако эффект гормонов явно недостаточен для сохранения беременности МНС-несовместимым плодом, и большинство факторов сдерживания формируется в процессе морфогенеза плаценты в соответствии с законами функционирования и регуляции иммунной системы.

Клетки врожденного иммунитета в плаценте

Макрофаги присутствуют в плодных и материнских компонентах пла­центы. На долю этих клеток приходится 10-20% лейкоцитов, содержащихся в децидуальной оболочке, где выявляют активированные формы макрофа­гов, однако синтез ими провоспалительных цитокинов Ш-1, ТNРа, Ш-6, Ш-8 ограничен. Эти цитокины имеют несомненные потенции к поврежде­нию и отторжению плода. Они играют ключевую роль в нарушении бере­менности, вызванной инфекциями.

Дендритные клетки присутствуют в материнской части плаценты. Они представлены незрелыми и зрелыми миелоидными дендритными клетками. Преобладающий функциональный вариант - клетки ^С2-типа, ответст­венные за индукцию анергии Т-лимфоцитов. На дендритных клетках, как и на макрофагах, обнаружены молекулы 1ЕТ2 и 1ЕТ4, выступающие в качест­ве рецепторов молекул Н^А-О. Дендритные клетки и макрофаги плаценты активно поглощают клетки неворсинчатого трофобласта, подвергающиеся апоптозу, что рассматривают как этап индукции иммунологической толе­рантности матери к антигенам плода, унаследованным от отца. Наконец, для АПК плаценты, прежде всего дендритных, характерен высокий уро­вень активности индолил-2,3-дезоксигеназы. Как известно, этот фермент катализирует превращение триптофана в ^формилкинуренин, который затем превращается в кинуренин. При этом формируется микроокружение, дефицитное по триптофану, - аминокислоте, лимитирующей биосинтез белка. Такое микроокружение характерно для участков локальной имму­носупрессии.

Раздел 2.4.1), что клетки с таким фенотипом активно секретируют цитокины, прежде всего №N7, но обладают ограниченной цитолитической активностью. Проявлению активности естественных киллеров способству­ет экспрессия на клетках плода и трофобласта стрессорных молекул М1СА и М1СВ, служащих индукторами активации NК-клеток, при отсутствии на них классических молекул МНС-1. Однако активность NК-клеток в трофобласте блокируется неклассическими молекулами Н^А-0 и Н^А-Е, экспрессируемыми клетками трофобласта, а также растворимыми формами этих молекул. Аналогичной, хотя и менее выраженной функцией обладают у5Т-клетки, содержание которых в трофобласте существенно повышено (до 25% против 2-3% в кровотоке). Однако роль у8Т-, как и NКТ-клеток, в плаценте связана, скорее всего, со сдерживанием реакции отторжения, поскольку этим клеткам свойственна регуляторная функция, активно про­являемая ими в слизистых оболочках.

Особенности дифференцировки Т-клеток в организме беременных и в плаценте

Содержание Т-лимфоцитов в децидуальной оболочке достаточно высоко в начальный период после ее формирования, но к концу беременности их содержание снижается до 5-8% от числа клеток костномозгового происхож­дения. Значительная часть этих клеток (до 30%, против 5-8% в нормаль­ной крови) экспрессирует мембранные молекулы Н^А-^К, т.е. находится в активированном состоянии. Т-клетки представлены как С^8+, так и С^4+ лимфоцитами. Несмотря на отсутствие экспрессии молекул МНС-1 на клет­ках трофобласта, среди С^8+ Т-лимфоцитов есть клетки, специфичные к антигенам плода, т.е. потенциальные киллеры, способные повредить ткани плода. Их проникновение в плод предотвращается с помощью механизма, проявляющегося при защите иммунологически привилегированных зон (см. выше): клетки трофобласта экспрессируют молекулы семейства ТNР, способные индуцировать апоптоз клеток, несущих соответствующие рецеп­торы. Так, на клетках трофобласта обнаружены молекулы Ра8^, ТКА№, способные через взаимодействие соответственно с рецепторами Раз- (С^95) и ^К-5 вызывать апоптоз эффекторных Т-клеток. Кроме того, активность Т-клеток подавляется в связи с дефицитом триптофана в микроокружении, о формировании которого говорилось выше.

Как известно, субпопуляции хелперных Т-лимфоцитов определяют направление развития иммунного ответа, которое обычно соответству­ет потребностям организма. При реакции на аллогенный трансплантат (в качестве аналога которого можно рассматривать плод) преобладает их дифференцировка в ТЫ-клетки - продуценты №N7. При беременности на системном уровне соотношение субпопуляций Т-хелперов изменяется незначительно и при этом выявляют лишь некоторое предпочтение диф- ференцировки в ТЬ2-клетки в ущерб ТЫ- и ТЫ7-хелперам. В децидуаль­ной оболочке плаценты ТЫ-клеток практически нет (вероятно, вследствие блокады их дифференцировки в региональных лимфатических узлах), тогда как ТЬ2-клетки присутствуют, и их дифференцировка в региональных лим­фатических узлах полностью сохранена. О реальной опасности ТЫ-клеток и их продуктов для вынашивания плода свидетельствуют данные экспери­ментов с введением в плаценту мышей предварительно индуцированных ТЫ-клеток: это приводит к выкидышу. Аналогичное введение ТЬ2-клеток такого эффекта не вызывает. Решающую роль в реализации такого действия ТЫ-клеток играет секретируемый ими №N7, введение которого само по себе вызывает прерывание беременности.

Уже давно постулировали защитную роль супрессорных клеток, кото­рые должны развиваться или аккумулироваться в плаценте. Данные, напрямую подтверждающие эти представления, получены после откры­тия естественных регуляторных Т-клеток. Содержание С^4+ С^25 + Рохр3+ клеток (регуляторные Т-лимфоциты) в циркулирующей крови беремен­ных достигает максимума во II триместре беременности. После родов содержание этих клеток уже не отличается от нормы. Содержание фун­кционально активных регуляторных С^4+ С^25+ Рохр3+ Т-клеток воз­растает также в децидуальной оболочке, т.е. в зоне непосредственного контакта с тканями плода: на их долю приходится 14% от числа дециду­альных С^4+ Т-лимфоцитов (в норме в периферической крови - около 5%). Развитию регуляторных Т-клеток в плаценте способствуют толеро- генные дендритные клетки. При самопроизвольном выкидыше содержа­ние регуляторных Т-клеток в плаценте существенно ниже. Накопление в плаценте регуляторных Т-лимфоцитов не происходит у мышей, гене­тически предрасположенных к развитию спонтанных абортов, причем перенос им С^4+ С^25+ Т-клеток от нормальных сингенных животных предотвращает аборты.

Помимо естественных регуляторных клеток иммунопротективную роль в плаценте играют индуцированные (адаптивные) регуляторные Т-лим- фоциты типов ТЬ3 и Тг1. Эти клетки секретируют супрессорные цитоки­ны Ш-10 и ТОРр, подавляющие активность ТЫ-клеток и их цитокинов. Дополнительную регуляторную роль играют естественные регуляторные Т-клетки типов NКТ и 7§Т, о которых уже говорилось.

Таким образом, динамика численности субпопуляций Т-лимфоцитов свидетельствует о предотвращении проникновения в плаценту или раз­вития в ней ТЫ-клеток, агрессивных в отношении плода, и накоплении естественных регуляторных клеток, предупреждающих развитие реакции отторжения.

В-клетки, гуморальный иммунитет и система комплемента

Исходное содержание В-клеток в децидуальной оболочке невелико (как и в кровотоке матери). Оно существенно возрастает в процессе беремен­ности, достигая 13% в поздние сроки. Уже упоминалось о разнообразном спектре антител, в том числе направленных против молекул Н^А (осо­бенно I класса), - «следа» предшествующих беременностей. Развитию гуморального иммунного ответа, в том числе в зоне контакта матери и плода, способствует наличие ТЬ2-клеток. Полагают, что подобно тому, как это происходит при иммунологических реакциях на аллотрансплантат или опухоль, антитела не только не играют существенной деструктивной роли, но даже предохраняют клетки плода от повреждения факторами клеточного иммунитета.

Широко известный и, возможно, единственный пример повреждающей роли антител, синтезируемых в организме матери и направленных про­тив антигенов плода, - анти-КЬ-антитела, вызывающие гемолитическую болезнь новорожденных (см. раздел 4.5.2.1). Пока трудно сказать, почему среди огромного множества антигенов, различных у плода и матери, именно резус-антигены (особенно ^) не только оказываются иммуногенными, но и определяют деструктивный эффект гуморального иммунитета. Вероятно, одна из причин - высокая чувствительность эритроцитов, на которых локализуется этот антиген к комплементзависимому лизису. Особое место этого антигена среди эритроцитарных аллоантигенов, по-видимому, обус­ловлено его наибольшей иммуногенностью.

Несовместимость матери и плода по многим антигенам - неизменный атрибут беременности, так как плод для материнского организма является "аллотрансплантатом", наследовавшим 50 % своих генов от отца.

Изосерологическая несовместимость крови матери и плода имеет несколько форм.

  • · Изосерологическая несовместимость крови матери и плода по системе резус (резус-конфликт) - развивается при беременности резус-отрицательной женщины резус-положительным плодом. Обусловливает 95% всех случаев несовместимости крови матери и плода, имеющих клинические проявления. Чаще всего первая беременность в таком случае протекает без осложнений, а резус-конфликт возникает при беременности данной женщины втором резус-положительным плодом.
  • · Изосерологическая несовместимость крови матери и плода по системе АВ0. Чаще всего наблюдается в случае, если мать имеет 0(I) группу крови, а плод - A(II) (до 40% всех случаев несовместимости крови матери и плода по АВ0). Гемолитическая болезнь плода (разрушение эритроцитов (красных клеток крови плода иммунной системой матери)) развивается только в 2,5% случаев несовместимости крови матери и плода по АВ0 и протекает в значительно более легкой форме, чем при резус-конфликте.
  • · Изосерологическая несовместимость крови матери и плода по другим системам крови. Система Kell-cellano: конфликт возникает, если беременная женщина не имеет на поверхности своих эритроцитов (красные клетки крови) белка Kell-1, а плод имеет. Более половины таких беременностей осложняется особенной гемолитической болезнью плода, тяжесть течения которой не связана с уровнем антител (защитных белков) против эритроцитов плода в крови матери. При несоответствии крови матери и плода по системе Kell не происходит гемолиза (разрушение эритроцитов плода). Плод страдает от анемии (малокровие), потому что иммунная система матери в случае Kell-конфликта подавляет производство эритроцитов плода.

Возможные причины изоиммунизации:

  • · инфекционные заболевания во время беременности (ОРЗ, грипп)
  • · гестозы, при которых происходит нарушение целостности ворсин хориона
  • · внематочная беременность
  • · самопроизвольный аборт на сроке беременности более 32 дней (46 дней после предшествующей менструации)
  • · медицинский аборт
  • · нормальные роды (рождение резус-положительного ребенка резус-отрицательной матерью при групповой совместимости) - поступление в кровоток матери пуповинной крови
  • · оперативное вмешательство в родах (ручное отделение плаценты)
  • · кесарево сечение
  • · переливание резус-положительной крови в прошлом
  • · внутриутробная сенсибилизации (известная под названием «бабушкина теория»), когда резус - отрицательная беременная сенсибилизировалась при рождении резус-положительными клетками матери (составляет 2% всех случаев резус-сенсибилизации)
  • · амниоцентез

При первой беременности и, соответственно первом проникновении чужеродного антигена, организм беременной начинает синтезировать антитела класса Ig M. Эти иммуноглобулины по своим серологическим свойствам относят к полным антителам. Полные антитела имеют большую молекулярную массу и плохо проникают через плаценту, поэтому играют второстепенную роль при развитии патологии у плода. Как правило, во время первой беременности резус-конфликт развивается редко, т.к. в подавляющем большинстве случаев количество попадающих в кровь матери эритроцитов плода невелико и недостаточно для возникновения вторичного иммунного ответа. Частота дородовой первичной изоиммунизации в течение первой резус-несовместимой беременности составляет менее 1%.

Наиболее вероятное время получения первичного стимула - послеродовой период. Различные оперативные вмешательства (ручное отделение плаценты, кесарево сечение) значительно увеличивают возможность трансплацентарного перехода эритроцитов плода в кровоток матери и вызывают сенсибилизацию организма. Иммунизация к резус-фактору может наступить также после искусственных абортов, особенно в поздние сроки, или самопроизвольных выкидышей.

При повторных беременностях вероятность резус-конфликта повышается, т.к. в крови женщины находятся защитные антирезусные-антитела (клетки памяти), оставшиеся от прежней беременности, которые при последующем воздействии антигенов, быстро запускают вторичный иммунный ответ с выработкой в организме беременной антител класса Ig G и Ig A. Это неполные (блокирующие и агглютинирующие) антитела, способные проникать через плаценту благодаря своему малому размеру и вызывать гемолиз эритроцитов плода.

Для первичного иммунного ответа достаточно попадания 50-75 мл эритроцитов плода в кровь матери, для вторичного - 0,1 мл

Несовместимость матери и плода по системе АВ0 (Если мать имеет О(I) группу, а отец - А(II), В(III) или АВ(IV) смягчает течение беременности при резус-конфликте. Это связано с тем, что при попадании эритроцитов плода в кровь матери они быстро разрушаются материнскими анти-А и анти-В - антителами, поэтому антирезусные-антитела не успевают синтезироваться. Риск развития резус-сенсибилизации при резус положительном плоде и АВ0-несовместимости составляет 10-20% от риска при условии АВ0-совместимости.

Вследствие несовместимости организмов матери и плода по эритроцитарным антигенам развивается гемолитическая болезнь плода и новорожденного (эритробластоз). Болезнь может быть обусловлена несовместимостью плода и матери по резус-фактору или АВ0-антигенам.

резус конфликт кровь плод