Третий закон ньютона опыт. Формулировка третьего закона Ньютона: примеры, связь с ускорением системы и с ее импульсом. Примеры решения задач

Третий закон Ньютона показывает, что действие одного тела на другое имеет взаимный характер. Однако часто мы видим (или ощущаем) действие, распространяется только на одно из двух тел, взаимодействующих, в то время, как действие на второе тело остается незамеченным.

Согласно третьему закону Ньютона, камень притягивает Землю с такой же силой, с которой Земля притягивает камень. Поэтому, когда камень падает, он и Земля - оба движутся с ускорениями навстречу друг другу. Однако ускорение Земли меньше за ускорение камня во столько раз, во сколько раз масса Земли больше массы камня. Поэтому мы и замечаем часто лишь одну силу взаимодействия с двух - силу, действующую на камень со стороны Земли. А с аналогичным модулем сила, действующая на Землю со стороны камня, остается незамеченной.

В завершение урока можно рассмотреть несколько примеров проявления третьего закона Ньютона.

1. Явление отдачи. Сила, действующая на снаряд со стороны пушки, равна по модулю силе, действующей на пушку со стороны снаряда в момент выстрела. В автоматической стрелковом оружии явление отдачи используется для перезарядки оружия.

2. Реактивное движение. С огромной скоростью выбрасывая продукты сгорания топлива назад, ракета действует на них с необычайной силой. С такой же по модулю, но направленной вперед, силой продукты сгорания действуют на ракету.

3. Взаимодействие Земли и Солнца, Луны и Земли, движение планет и других небесных тел.

4. Движение транспортных средств.

Вопрос учащихся в ходе изложения нового материала

1. Вызывает постоянная сила постоянное ускорение?

2. Как зависит модуль ускорения от модуля силы?

3. Как направлено ускорение тела, если известно направление действующему силы?

4. Каково соотношение между силами, с которыми взаимодействуют два тела?

5. Что общего имеют две силы, с которыми взаимодействуют два тела?

6. Чем отличаются силы, с которыми взаимодействуют два тела?

7. Ли физическая разница между действием и противодействием?

8. Почему третий закон Ньютона называют законом взаимодействия?

Закрепление изученного материала

1. Тренируемся решать задачи

1. Тело массой 2 кг, движущегося на юг, изменяет скорость своего движения под действием постоянной силы 10 Н, направленной на север. Вычислите модуль и определите направление ускорения тела. Опишите характер движения тела.

2. Под действием силы 15 кН тело движется прямолинейно так, что его координата изменяется по закону х = -200 +9 t-3t2. Вычислите массу тела.

3. Проекция скорости тела, движущегося прямолинейно вдоль оси Ох, изменяется по закону vx-5-2t. Вычислите импульс тела и импульс силы за 1 с и за 4 с после начала движения, если масса тела 3 кг.

4. Небольшую лодку привлекается канатом к теплоходу. Почему теплоход не движется в сторону лодки?

5. Человек массой 60 кг, стоя на коньках, отбрасывает от себя шар массой 3 кг, придавая ей в горизонтальном ускорение 10 м/с2. Какое ускорение получает при этом сам человек?

6. Два человека тянут веревку в противоположные стороны, прикладывая силы 100 H каждый. Или разорвется веревка, если она выдерживает натяжение, не превышающей 190 Н?

В известной игре «перетягивание каната» обе партии действуют друг на друга (через канат) с одинаковыми силами, как это следует из закона действия и противодействия. Значит, выиграет (перетянет канат) не та партия, которая сильнее тянет, а та, которая сильнее упирается в Землю.

Как объяснить, что лошадь везет сани, если, как это следует из закона действия и противодействия, сани тянут лошадь назад с такой же по модулю силой F2, с какой лошадь тянет сани вперед (сила F1)? Почему эти силы не уравновешиваются?

Дело в том, что, во-первых, хотя эти силы равны и прямо противоположны, они приложены к разным телам, а во-вторых, и на сани и на лошадь действуют еще и силы со стороны дороги (рис. 9).

Сила F1 со стороны лошади приложена к саням, испытывающим, кроме этой силы, лишь небольшую силу трения f1полозьев о снег; поэтому сани начинают двигаться вперед. К лошади же, помимо силы со стороны саней F2направленной назад, приложены со стороны дороги, в которую она упирается ногами, силы f2, направленные вперед и большие, чем сила со стороны саней. Поэтому лошадь тоже начинает двигаться вперед. Если поставить лошадь на лед, то сила со стороны скользкого льда будет недостаточна; и лошадь не сдвинет сани. То же будет и с очень тяжело нагруженным возом, когда лошадь, даже упираясь ногами, не сможет создать достаточную силу, чтобы сдвинуть воз с места. После того как лошадь сдвинула сани и установилось равномерное движение саней, сила f1 будет уравновешена силами f2 (первый закон Ньютона).

Подобный же вопрос возникает и при разборе движения поезда под действием электровоза. И здесь, как и в предыдущем случае, движение возможно лишь благодаря тому, что, кроме сил взаимодействия между тянущим телом (лошадь, электровоз) и «прицепом» (сани, поезд), на тянущее тело действуют со стороны дороги или рельсов силы, направленные вперед. На идеально скользкой поверхности, от которой нельзя «оттолкнуться», ни сани с лошадью, ни поезд, ни автомобиль не могли бы сдвинуться с места.

Третий закон Ньютона позволяет объяснить явление отдачи при выстреле. Установим на тележку модель пушки, действующую при помощи пара (рис. 10) или при помощи пружины. Пусть вначале тележка покоится. При выстреле «снаряд» (пробка) вылетает в одну сторону, а «пушка» откатывается в другую.

ньютон третий движение отдача

Откат пушки и есть результат отдачи. Отдача есть не что иное, как противодействие со стороны снаряда, действующее, согласно третьему закону Ньютона, на пушку, выбрасывающую снаряд. Согласно этому закону сила, действующая со стороны пушки на снаряд, все время равна силе, действующей со стороны снаряда на пушку, и направлена противоположно ей.

В известной игре «перетягивание каната» обе партии действуют друг на друга (через канат) с одинаковыми силами, как это следует из закона действия и противодействия. Значит, выиграет (перетянет канат) не та партия, которая сильнее тянет, а та, которая сильнее упирается в Землю.

Рис. 72. Лошадь сдвинет и повезет нагруженные сани, потому что со стороны дороги на ее копыта действуют большие силы трения, чем на скользкие полозья саней

Как объяснить, что лошадь везет сани, если, как это следует из закона действия и противодействия, сани тянут лошадь назад с такой же по модулю силой , с какой лошадь тянет сани вперед (сила )? Почему эти силы не уравновешиваются? Дело в том, что, во-первых, хотя эти силы равны и прямо противоположны, они, приложены к разным телам, а во-вторых, и на сани и на лошадь действуют еще и силы со стороны дороги (рис. 72). Сила со стороны лошади приложена к саням, испытывающим, кроме этой силы, лишь небольшую силу трения полозьев о снег; поэтому сани начинают двигаться вперед. К лошади же, помимо силы со стороны саней , направленной назад, приложены со стороны дороги, в которую она упирается ногами, силы , направленные вперед и большие, чем сила со стороны саней. Поэтому лошадь тоже начинает двигаться вперед. Если поставить лошадь на лед, то сила со стороны скользкого льда будет недостаточна, и лошадь не сдвинет сани. То же будет и с очень тяжело нагруженным возом, когда лошадь, даже упираясь ногами, не сможет создать достаточную силу, чтобы сдвинуть воз с места. После того как лошадь сдвинула сани и установилось равномерное движение саней, сила будет уравновешена силами (первый закон Ньютона).

Подобный же вопрос возникает и при разборе движения поезда под действием электровоза. И здесь, как и в предыдущем случае, движение возможно лишь благодаря тому, что, кроме сил взаимодействия между тянущим телом (лошадь, электровоз) и «прицепом» (сани, поезд), на тянущее тело действуют со стороны дороги или рельсов силы, направленные вперед. На идеально скользкой поверхности, от которой нельзя «оттолкнуться», ни сани с лошадью, ни поезд, ни автомобиль не могли бы сдвинуться с места.

Рис. 73. При нагревании пробирки с водой пробка вылетает в одну сторону, а «пушка» катится в противоположную сторону

Третий закон Ньютона позволяет рассчитать явление отдачи при выстреле. Установим на тележку модель пушки, действующую при помощи пара (рис. 73) или при помощи пружины. Пусть вначале тележка покоится. При выстреле «снаряд» (пробка) вылетает в одну сторону, а «пушка» откатывается в другую. Откат пушки и есть результат отдачи. Отдача есть не что иное, как противодействие со стороны снаряда, действующее, согласно третьему закону Ньютона, на пушку, выбрасывающую снаряд. Согласно этому закону сила, действующая со стороны пушки на снаряд, все время равна силе, действующей со стороны снаряда на пушку, и направлена противоположно ей. Таким образом, ускорения, получаемые пушкой и снарядом, направлены противоположно, а по модулю обратно пропорциональны массам этих тел. В результате снаряд и пушка приобретут противоположно направленные скорости, находящиеся в том же отношении. Обозначим скорость, полученную снарядом, через , а скорость, полученную пушкой, через , а массы этих тел обозначим через и соответственно. Тогда

Здесь и - модули скоростей.

Выстрел из всякого оружия сопровождается отдачей. Старинные пушки после выстрела откатывались назад. В современных орудиях ствол укрепляется на лафете не жестко, а при помощи приспособлений, которые позволяют стволу отходить назад; затем пружины снова возвращают его на место. В автоматическом огнестрельном оружии явление отдачи используется для того, чтобы перезарядить орудие. При выстреле отходит только затвор. Он выбрасывает использованную гильзу, а затем пружины, возвращая его на место, вводят в ствол новый патрон. Этот принцип используется не только в пулеметах и автоматических пистолетах, но и в скорострельных пушках.

Примеров взаимодействия тел можно привести сколь угодно много. Когда вы, находясь в одной лодке, начнете за веревку подтягивать другую, то и ваша лодка обязательно продвинется вперед (рис. 1). Действуя на вторую лодку, вы заставляете ее действовать на вашу лодку.

Если вы ударите ногой по футбольному мячу, то немедленно ощутите об-ратное действие на ногу. При соударении двух бильярдных шаров изменяют свою скорость, т. е. получают ускорения, оба шара. Когда при формировании железнодорожного состава вагоны наталкиваются друг на друга, буферные пружины сжимаются у обоих вагонов. Все это проявления общего закона взаимодействия тел.

Действия тел друг на друга носят характер взаимодействия не только при непосредственном контакте тел. Положите, например, на гладкий стол два сильных магнита разноименными полюсами навстречу друг другу, и вы тут же обнаружите, что магниты начнут двигаться навстречу друг другу. Земля притягивает Луну (сила всемирного тяготения) и заставляет ее двигаться по криволинейной траектории; в свою очередь Луна также притягивает Землю (тоже сила всемирного тяготения). Хотя, естественно, в системе отсчета, связанной с Землей, ускорение Земли, вызываемое этой силой, нельзя обнаружить непосредственно (непосредственно нельзя обнаружить даже значительно большее ускорение, вызываемое притяжением Земли Солнцем), оно проявляется в виде приливов.

Заметные изменения скоростей обоих взаимодействующих тел наблюдаются, однако, лишь в тех случаях, когда массы этих тел не сильно отличаются друг от друга. Если же взаимодействующие тела значительно различаются по массе, заметное ускорение получает только то из них, которое имеет меньшую массу. Так, при падении камня Земля заметно ускоряет движение камня, но ускорение Земли (а ведь камень тоже притягивает Землю) практически обнаружить нельзя, так как оно очень мало.

Силы взаимодействия двух тел

Выясним с помощью опыта, как связаны между собой силы взаимодействия двух тел. Грубые измерения сил взаимодействия можно произвести на следующих опытах.

1 опыт . Возьмем два динамометра, зацепим друг за друга их крючки и, взявшись за кольца, будем растягивать их, следя за показаниями, обоих динамометров (рис. 2).

Мы увидим, что при любых растяжениях показания обоих динамометров будут совпадать; значит, сила, с которой первый динамометр действует на второй, равна силе, с которой второй динамометр действует на первый.

2 опыт . Возьмем достаточно сильный магнит и железный брусок и положим их на катки, чтобы уменьшить трение о стол (рис. 3). К магниту и бруску прикрепим одинаковые мягкие пружины, зацепленные другими концами на столе. Магнит и брусок притянутся друг к другу и растянут пружины.

Опыт показывает, что к моменту прекращения движения пружины оказываются растянутыми совершенно одинаково. Это означает, что на оба тела со стороны пружин действуют одинаковые по модулю и противоположные по направлению силы:

\(\vec F_1 = -\vec F_2 \qquad (1)\)

Так как магнит покоится, то сила \(\vec F_2\) равна по модулю и противоположна по направлению силе \(\vec F_4\), с которой на него действует брусок:

\(\vec F_1 = \vec F_4 \qquad (2)\)

Точно так же равны по модулю и противоположны по направлению силы, действующие на брусок со стороны магнита и пружины:

\(\vec F_3 = -\vec F_1 \qquad (3)\)

Из равенств (1), (2), (3) следует, что силы, с которыми взаимодействуют магнит и брусок, равны по модулю и противоположны по направлению:

\(\vec F_3 = -\vec F_4 \qquad (1)\)

Опыт показывает, что силы взаимодействия между двумя телами равны по модулю и противоположны по направлению и в тех случаях когда тела движутся.

3 опыт . На двух тележках, которые могут катиться по рельсам, стоят два человека А и В (рис. 4). Они держат в руках концы веревки. Легко обнаружить, что независимо от того, кто натягивает («выбирает») веревку, А или В или оба вместе, тележки всегда приходят в движение одновременно и притом в противоположных направлениях. Измеряя ускорения тележек, можно убедиться, что ускорения обратно пропорциональны массам каждой из тележек (вместе с человеком). Отсюда следует, что силы, действующие на тележки, равны по модулю.

Третий закон Ньютона

На основе этих и подобных опытов можно сформулировать третий закон Ньютона.

Силы, с которыми тела действуют друг на друга, равны по модулю и на-правлены вдоль одной прямой в противоположные стороны.

Это означает, что если на тело А со стороны тела В действует сила \(\vec F_A\) (рис. 5), то одновременно на тело В со стороны тела А действует сила \(\vec F_B\), причем

\(\vec F_A = -\vec F_B \qquad (5)\)

Используя второй закон Ньютона, можно равенство (5) записать так:

\(m_1 \cdot \vec a_1 = -m_2 \cdot \vec a_2 \qquad (6)\)

Отсюда следует, что

\(\frac{a_1}{a_2} = \frac{m_2}{m_1}= \mbox{const} \qquad (7)\)

Отношение модулей а 1 и а 2 ускорений взаимодействующих тел определяется обратным отношением их масс и совершенно не зависит от природы действующих между ними сил.

(Здесь имеется в виду, что никакие другие силы, кроме сил взаимодействия, на эти тела не действуют.)

В этом можно убедиться на следующем простом опыте. Поставим на гладкие рельсы две тележки одинаковой массы и на одной из них закрепим небольшой электрический двигатель, на вал которого может наматываться нить, привязанная к другой тележке, а на другую поставим гирю, масса которой равна массе двигателя (рис. 6). При работающем двигателе обе тележки устремляются с одинаковыми ускорениями навстречу друг другу и проходят одинаковые пути. Если массу одной из тележек сделать вдвое большей, то ее ускорение окажется в два раза меньше, чем другой, и за то же время она пройдет вдвое меньший путь.

Связь ускорений взаимодействующих тел с их массами можно установить и на таком опыте (рис. 7). На горизонтальную платформу помещают два катка разной массы, соединенные нитью.

Опыт покажет, что можно найти такое положение катков, когда они при вращении платформы не перемещаются по ней. Измерив радиусы обращения катков вокруг центра платформы, определим отношение центростремительных ускорений катков:

\(\frac{a_1}{a_2} = \frac{\omega \cdot R_1}{\omega \cdot R_2}\) или \(\frac{a_1}{a_2} = \frac{R_1}{R_2}\).

Сравнив это отношение с обратным отношением масс тел \(\frac{m_2}{m_1}\), убеждаемся, что \(\frac{a_1}{a_2} = \frac{m_2}{m_1}\) при любых скоростях вращения платформы.

Примечание

Надо помнить, что силы, о которых идет речь в третьем законе Ньютона, приложены к разным телам и поэтому не могут уравновешивать друг друга.

Непонимание этого часто приводит к недоразумениям. Так, иногда с помощью третьего закона Ньютона пытаются объяснить, почему то или иное тело находится в покое. Например, утверждают, что мел на столе покоится якобы потому, что сила тяжести \(\vec F_t\), действующая на тело, согласно третьему закону Ньютона, равна по модулю и противоположна по направлению силе упругости \(\vec N\) (силе реакции опоры), действующей на него со стороны стола. На самом деле равенство \(\vec F_t + \vec N = 0\) является следствием второго закона Ньютона, а не третьего: ускорение равно нулю, поэтому и сумма сил, действующих на тело, равна нулю. Из третьего же закона Ньютона вытекает лишь, что сила реакции опоры \(\vec N\) равна по модулю силе \(\vec P\), с которой мел давит на стол (рис. 8). Эти силы приложены к разным телам и направлены в противоположные стороны.

Примеры применения третьего закона Ньютона.

В известной игре «перетягивание каната» обе партии действуют друг на друга (через канат) с одинаковыми силами, как это следует из закона действия и противодействия. Значит, выиграет (перетянет канат) не та партия, которая сильнее тянет, а та, которая сильнее упирается в Землю.

Как объяснить, что лошадь везет сани, если, как это следует из закона действия и противодействия, сани тянут лошадь назад с такой же по модулю силой F 2 , с какой лошадь тянет сани вперед (сила F 1)? Почему эти силы не уравновешиваются?

Дело в том, что, во-первых, хотя эти силы равны и прямо противоположны, они приложены к разным телам, а во-вторых, и на сани и на лошадь действуют еще и силы со стороны дороги (рис. 9).

Сила F 1 со стороны лошади приложена к саням, испытывающим, кроме этой силы, лишь небольшую силу трения f 1 полозьев о снег; поэтому сани начинают двигаться вперед. К лошади же, помимо силы со стороны саней F 2 направленной назад, приложены со стороны дороги, в которую она упирается ногами, силы f 2 , направленные вперед и большие, чем сила со стороны саней. Поэтому лошадь тоже начинает двигаться вперед. Если поставить лошадь на лед, то сила со стороны скользкого льда будет недостаточна; и лошадь не сдвинет сани. То же будет и с очень тяжело нагруженным возом, когда лошадь, даже упираясь ногами, не сможет создать достаточную силу, чтобы сдвинуть воз с места. После того как лошадь сдвинула сани и установилось равномерное движение саней, сила f 1 будет уравновешена силами f 2 (первый закон Ньютона).

Подобный же вопрос возникает и при разборе движения поезда под действием электровоза. И здесь, как и в предыдущем случае, движение возможно лишь благодаря тому, что, кроме сил взаимодействия между тянущим телом (лошадь, электровоз) и «прицепом» (сани, поезд), на тянущее тело действуют со стороны дороги или рельсов силы, направленные вперед. На идеально скользкой поверхности, от которой нельзя «оттолкнуться», ни сани с лошадью, ни поезд, ни автомобиль не могли бы сдвинуться с места.

Третий закон Ньютона позволяет объяснить явление отдачи при выстреле. Установим на тележку модель пушки, действующую при помощи пара (рис. 10) или при помощи пружины. Пусть вначале тележка покоится. При выстреле «снаряд» (пробка) вылетает в одну сторону, а «пушка» откатывается в другую.

Откат пушки и есть результат отдачи. Отдача есть не что иное, как противодействие со стороны снаряда, действующее, согласно третьему закону Ньютона, на пушку, выбрасывающую снаряд. Согласно этому закону сила, действующая со стороны пушки на снаряд, все время равна силе, действующей со стороны снаряда на пушку, и направлена противоположно ей.

О значении третьего закона Ньютона

Главное значение третьего закона Ньютона обнаруживается при исследовании движения системы материальных точек или системы тел. Этот закон позволяет доказать важные теоремы динамики и сильно упрощает изучение движения тел в тех случаях, когда их нельзя рассматривать как материальные точки.

Третий закон сформулирован для точечных тел (материальных точек). Его применение для реальных тел, имеющих конечные размеры, требует уточнения и обоснования. В данной формулировке нельзя применять этот закон и в неинерциальных системах отсчета.

Литература

  1. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.
  2. Элементарный учебник физики: Учебное пособие. В 3 т. / Под ред. Г.С. Ландсберга: Т. 1. Механика. Теплота. Молекулярная физика - М.: ФИЗМАТЛИТ, 2003. - 608с.
  • 2. Виды механического движения - прямолинейное равномерное, прямолинейное равноускоренное, равномерное движение по окружности
  • 3. Законы Ньютона. Примеры проявления законов Ньютона в природе и использование этих законов в технике
  • 4. Взаимодействие тел: силы тяжести, упругости, трения. Примеры проявления этих сил в природе и технике
  • 5. Импульс тела. Закон сохранения импульса. Примеры проявления закона сохранения импульса в природе и использования этого закона в технике
  • 6. Механическая работа и мощность. Простые механизмы. Кпд простых механизмов
  • 8. Механические волны. Длина волны, скорость распространения волны и соотношения между ними. Звуковые волны. Эхо
  • 9. Потенциальная и кинетическая энергия. Примеры перехода энергии из одного вида в другой. Закон сохранения энергии
  • 11. Передача давления газами, жидкостями и твердыми телами. Закон Паскаля и его применение в гидравлических машинах
  • 12. Атмосферное давление. Приборы для измерения атмосферного давления. Воздушная оболочка Земли и ее роль в жизнедеятельности человека
  • 13. Действие жидкостей и газов на погруженное в них тело. Архимедова сила, причины ее возникновения. Условия плавания тел
  • 14. Внутренняя энергия тел и способы ее изменения. Виды теплопередачи, их учет и использование в быту
  • 15. Плавление кристаллических тел и объяснение этого процесса на основе представлений о строении вещества. Удельная теплота плавления
  • 16. Испарение и конденсация. Объяснение этих процессов на основе представлений о строении вещества. Кипение. Удельная теплота парообразования
  • 19. Явление электромагнитной индукции. Примеры проявления электромагнитной индукции и ее использование в технических устройствах
  • 20. Закон Ома для участка цепи. Последовательное и параллельное соедин-е проводников
  • 21. Законы отражения и преломления света. Показатель преломления. Практическое использование этих законов
  • 22. Линзы. Фокус линзы. Построение изображений в собирающей линзе. Использование линз в оптических приборах
  • 3. Законы Ньютона. Примеры проявления законов Ньютона в природе и использование этих законов в технике

    Первый закон Ньютона. Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела (или действия других тел компенсиру­ются). Этот закон часто называется законом инерции, поскольку движение с постоянной скоростью при компенсации внешних воздействий на тело называется инерцией. Второй закон Ньютона. Сила, действующая на тело, равна произведению массы тела на сооб­щаемое этой силой ускорение .
    - ускорение прямо пропорционально действующей (или равнодействующей) силе и обратно пропорцио­нально массе тела. Третий закон Ньютона. Из опытов по взаимодействию тел следует
    , из второго закона Ньютона
    и
    , поэтому
    . Силы взаимодействия между телами: направлены по одной прямой, равны по величине, противоположны по направлению, приложены к разным телам (по­этому не могут уравновешивать друг друга), всегда действуют парами и имеют одну и ту же природу. Законы Ньютона выполняются одновременно, они позволяют объяснить закономерности движения планет, их естественных и искусственных спутников. Иначе, позволяют предвидеть траектории движения планет, рассчитывать траектории космических ко­раблей и их координаты в любые заданные моменты времени. В земных условиях они позволяют объяс­нить течение воды, движение многочисленных и раз­нообразных транспортных средств (движение автомо­билей, кораблей, самолетов, ракет). Для всех этих движений, тел и сил справедливы законы Ньютона.

    4. Взаимодействие тел: силы тяжести, упругости, трения. Примеры проявления этих сил в природе и технике


    Опыты с различными телами показывают, что при взаимодействии двух тел оба тела получают ускорения, направленные в противоположные стороны. При этом отношение абсолютных значений уско­рений взаимодействующих тел равно обратному отношению их масс
    . Обычно вычисляют ускорение одного тела (того, движение которого изучается). Влияние же другого тела, вызывающего ускорение, коротко называется силой. В механике рассматриваются силатяжести, силаупругости и силатрения. Сила тяжести -это сила, с которой Земля притягивает к себе все тела, находящиеся вблизи ее поверхности(
    ). Сила тяжести приложена к самому телу и направлена вертикально вниз (рис. 1а). Сила упругости возникает при деформации тела (рис. 1б), она направлена перпендикулярно по­верхности соприкосновения взаимодействующих тел. Сила упругости пропорциональна удлинению:
    .Знак «-»показывает, что сила упругости на­правлена в сторону, противоположную удлинению,k - жесткость (пружины) зависит от ее геометриче­ских размеров и материала. Сила, возникающая в месте соприкосновения тел и препятствующая их относительному перемеще­нию, называется силой трения. Если тело скользит по какой-либо поверхности, то его движению препят­ствует сила трения скольжения
    , гдеN - сила реакции опоры (рис. 2),m -коэффициент тре­ния скольжения. Сила трения скольжения всегда направлена против движения тела. Сила тяжести и сила упругости -это силы, зависящие от координат взаимодействующих тел от­носительно друг друга. Сила трения зависит от скорости тела, но не зависит от координат. Как в природе, так и в технике эти силы про­являются одновременно или парами. Например, сила трения увеличивается при увеличении силы тяжести. В быту часто полезное трение усиливают, а вредное -ослабляют (применяют смазку, заменяют трение скольжения трением качения).