Зависимость внутренней энергии от объема. Формула внутренней энергии

Наряду с механической энергией, любое тело (или система) обладает внутренней энергией. Внутренняя энергия – энергия покоя. Она складывается из теплового хаотического движения молекул, составляющих тело, потенциальной энергии их взаимного расположения, кинетической и потенциальной энергии электронов в атомах, нуклонов в ядрах и так далее.

В термодинамике важно знать не абсолютное значение внутренней энергии, а её изменение.

В термодинамических процессах изменяется только кинетическая энергия движущихся молекул (тепловой энергии недостаточно, чтобы изменить строение атома, а тем более ядра). Следовательно, фактически под внутренней энергией в термодинамике подразумевают энергию теплового хаотического движения молекул.

Внутренняя энергия U одного моля идеального газа равна:

Таким образом, внутренняя энергия зависит только от температуры. Внутренняя энергия U является функцией состояния системы, независимо от предыстории.

Понятно, что в общем случае термодинамическая система может обладать как внутренней, так и механической энергией, и разные системы могут обмениваться этими видами энергии.

Обмен механической энергией характеризуется совершенной работой А, а обмен внутренней энергией – количеством переданного тепла Q.

Например, зимой вы бросили в снег горячий камень. За счёт запаса потенциальной энергии совершена механическая работа по смятию снега, а за счёт запаса внутренней энергии снег был растоплен. Если же камень был холодный, т.е. температура камня равна температуре среды, то будет совершена только работа, но не будет обмена внутренней энергией.

Итак, работа и теплота не есть особые формы энергии. Нельзя говорить о запасе теплоты или работы. Это мера переданной другой системе механической или внутренней энергии. Вот о запасе этих энергий можно говорить. Кроме того, механическая энергия может переходить в тепловую энергию и обратно. Например, если стучать молотком по наковальне, то через некоторое время молоток и наковальня нагреются (это пример диссипации энергии).

Можно привести ещё массу примеров превращения одной формы энергии в другую.

Опыт показывает, что во всех случаях, превращение механической энергии в тепловую и обратно совершается всегда в строго эквивалентных количествах. В этом и состоит суть первого начала термодинамики, следующего из закона сохранения энергии.

Количество теплоты, сообщаемой телу, идёт на увеличение внутренней энергии и на совершение телом работы:

, (4.1.1)

– это и есть первое начало термодинамики , или закон сохранения энергии в термодинамике.

Правило знаков: если тепло передаётся от окружающей среды данной системе, и если система производит работу над окружающими телами, при этом . Учитывая правило знаков, первое начало термодинамики можно записать в виде:

В этом выражении U – функция состояния системы; dU – её полный дифференциал, а δQ и δА таковыми не являются. В каждом состоянии система обладает определенным и только таким значением внутренней энергии, поэтому можно записать:

,

Важно отметить, что теплота Q и работа А зависят от того, каким образом совершен переход из состояния 1 в состояние 2 (изохорически, адиабатически и т.д.), а внутренняя энергия U не зависит. При этом нельзя сказать, что система обладает определенным для данного состояния значением теплоты и работы.

Из формулы (4.1.2) следует, что количество теплоты выражается в тех же единицах, что работа и энергия, т.е. в джоулях (Дж).

Особое значение в термодинамике имеют круговые или циклические процессы, при которых система, пройдя ряд состояний, возвращается в исходное. На рисунке 4.1 изображен циклический процесс 1–а –2–б –1, при этом была совершена работа А.


Рис. 4.1

Так как U – функция состояния, то

(4.1.3)

Это справедливо для любой функции состояния.

Если то согласно первому началу термодинамики , т.е. нельзя построить периодически действующий двигатель, который совершал бы бóльшую работу, чем количество сообщенной ему извне энергии. Иными словами, вечный двигатель первого рода невозможен. Это одна из формулировок первого начала термодинамики.

Следует отметить, что первое начало термодинамики не указывает, в каком направлении идут процессы изменения состояния, что является одним из его недостатков.

Вы видите взлетающую ракету. Она совершает работу – поднимает космонавтов и груз. Кинетическая энергия ракеты возрастает, так как по мере подъёма ракета приобретает всё большую скорость. Потенциальная энергия ракеты также возрастает, так как она всё выше поднимается над Землёй. Следовательно, сумма этих энергий, то есть механическая энергия ракеты, тоже увеличивается.

Мы помним, что при совершении телом работы его энергия уменьшается. Однако ракета совершает работу, но её энергия не уменьшается, а увеличивается! В чём же разгадка противоречия? Оказывается, что кроме механической энергии существует ещё один вид энергии – внутренняя энергия. Именно за счёт уменьшения внутренней энергии сгорающего топлива ракета совершает механическую работу и, кроме того, увеличивает свою механическую энергию.

Не только горючие , но и горячие тела обладают внутренней энергией, которую легко превратить в механическую работу. Проделаем опыт. Нагреем в кипятке гирю и поставим на жестяную коробочку, присоединённую к манометру. По мере того как воздух в коробочке будет прогреваться, жидкость в манометре начнёт двигаться (см. рисунок).

Расширяющийся воздух совершает над жидкостью работу. За счёт какой энергии это происходит? Разумеется, за счёт внутренней энергии гири. Следовательно, в этом опыте мы наблюдаем превращение внутренней энергии тела в механическую работу. Заметим, что механическая энергия гири в этом опыте не меняется – она всё время равна нулю.

Итак, внутренняя энергия – это такая энергия тела, за счёт которой может совершаться механическая работа, при этом не вызывая убыли механической энергии этого тела.

Внутренняя энергия любого тела зависит от множества причин: рода и состояния его вещества, массы и температуры тела и других. Внутренней энергией обладают все тела: большие и маленькие, горячие и холодные, твёрдые, жидкие и газообразные.

Наиболее легко на нужды человека может быть использована внутренняя энергия лишь, образно говоря, горячих и горючих веществ и тел. Это нефть, газ, уголь, геотермальные источники вблизи вулканов и так далее. Кроме того, в XX веке человек научился использовать и внутреннюю энергию так называемых радиоактивных веществ. Это, например, уран, плутоний и другие.

Взгляните на правую часть схемы. В популярной литературе нередко упоминаются тепловая, химическая, электрическая, атомная (ядерная) и другие виды энергии. Все они, как правило, являются разновидностями внутренней энергии, так как за счёт них может совершаться механическая работа, не вызывая при этом убыли механической энергии. Понятие внутренней энергии мы рассмотрим более подробно при дальнейшем изучении физики.

ВНУТРЕННЯЯ ЭНЕРГИЯ, функция U термодинамических параметров системы (например, объёма V и температуры Т), изменение которой определяется работой, совершаемой однородной системой при условии её адиабатической изоляции. Понятие «внутренней энергии» ввёл в 1851 году У. Томсон (лорд Кельвин). Существование функции U(V,Т) есть следствие первого начала термодинамики - закона сохранения энергии в применении к процессам, в которых происходит передача теплоты. Приращение внутренней энергии ΔU = ΔQ-А, где ΔQ - количество теплоты, сообщаемое системе, А = рΔV - работа, совершаемая системой, р - давление. Согласно закону сохранения энергии, внутренняя энергия является однозначной функцией состояния физической системы, т. е. однозначной функцией независимых переменных, определяющих это состояние, например температуры и объёма. Однозначность внутренней энергии приводит к тому, что, хотя ΔQ и А зависят от характера процесса, переводящего систему из состояния с U 1 в состояние с U 2 , приращение ΔU определяется лишь значениями внутренней энергии в начальном и конечном состояниях: ΔU = U 1 - U 2 . Поэтому для кругового процесса полное изменение внутренней энергии равно нулю и ΔQ=А. При адиабатическом процессе (ΔQ = 0) изменение внутренней энергии равно работе, совершаемой системой при бесконечно медленном, квазистатическом процессе.

В общем случае внутренняя энергия есть функция внешних и внутренних термодинамических параметров, включая температуру. Вместо температуры в качестве термодинамического параметра можно выбрать энтропию S. Согласно второму началу термодинамики, ΔQ = ТΔS, тогда ΔU = ТΔS -рΔV. Внутренняя энергия как функция энтропии и объёма U(S,V) является одним из потенциалов термодинамической (характеристической функции), т.к. определяет все термодинамические свойства системы. Если система состоит из n компонентов, то U зависит (кроме S и V) от числа частиц N i в компонентах, i = 1, 2,..., n. Минимум U при постоянных энтропии, объёме и массах компонентов определяет устойчивое равновесие многофазных и многокомпонентных систем.

С точки зрения молекулярно-кинетической теории внутренней энергии имеет смысл среднее механической энергии (кинетические энергии и энергии взаимодействия) всех частиц системы. Если в термодинамическую систему входит электромагнитное поле, то его энергию также включают во внутреннюю энергию. Кинетическая энергия движения тела как целого не входит во внутреннюю энергию.

Для идеального газа, подчиняющегося классической статистике, внутренняя энергия зависит только от температуры: U = CVT, где CV - теплоёмкость при постоянном объёме. Для неидеального газа и жидкости внутренняя энергия зависит также от удельного объёма v = V/N, где N - число частиц. Например, для газа, подчиняющегося Ван дер Ваальса уравнению, внутренняя энергия имеет вид U = CVT - а/v, где а - постоянная, учитывающая взаимное притяжение молекул.

Лит. смотри при ст. Термодинамика.

Определение

Внутренней энергией тела (системы) называют энергию, которая связана со всеми видами движения и взаимодействия частиц, составляющих тело (систему), включая энергию взаимодействия и движения сложных частиц.

Из выше сказанного следует, что к внутренней энергии не относят кинетическую энергию движения центра масс системы и потенциальную энергию системы, вызванную действием внешних сил. Это энергия, которая зависит только от термодинамического состояния системы.

Внутреннюю энергию чаще всего обозначают буквой U. При этом бесконечно малое ее изменение станет обозначаться dU. Считается, что dU является положительной величиной, если внутренняя энергия системы растет, соответственно, внутренняя энергия отрицательна, если внутренняя энергия уменьшается.

Внутренняя энергия системы тел равна сумме внутренних энергий каждого отдельного тела плюс энергия взаимодействия между телами внутри системы.

Внутренняя энергия – функция состояния системы. Это означает, что изменение внутренней энергии системы при переходе системы из одного состояния в другое не зависит от способа перехода (вида термодинамического процесса при переходе) системы и равно разности внутренних энергий конечного и начального состояний:

Для кругового процесса полное изменение внутренней энергии системы равно нулю:

Для системы, на которую не действуют внешние силы и находящуюся в состоянии макроскопического покоя, внутренняя энергия – полная энергия системы.

Внутренняя энергия может быть определена только с точностью до некоторого постоянного слагаемого (U 0), которое не определимо методами термодинамики. Однако, данный факт не существенен, так как при использовании термодинамического анализа, имеют дело с изменениями внутренней энергии, а не абсолютными ее величинами. Часто U_0 полагают равным нулю. При этом в качестве внутренней энергии рассматривают ее составляющие, которые изменяются в предлагаемых обстоятельствах.

Внутреннюю энергию считают ограниченной и ее граница (нижняя) соответствует T=0K.

Внутренняя энергия идеального газа

Внутренняя энергия идеального газа зависит только от его абсолютной температуры (T) и пропорциональна массе:

где C V – теплоемкость газа в изохорном процессе; c V - удельная теплоемкость газа в изохорном процессе; – внутренняя энергия, приходящаяся на единицу массы газа при абсолютном нуле температур. Или:

i – число степеней свободы молекулы идеального газа, v – число молей газа, R=8,31 Дж/(моль К) – универсальная газовая постоянная.

Первое начало термодинамики

Как известно первое начало термодинамики имеет несколько формулировок. Одна из формулировок, которую предложил К. Каратеодори говорит о существовании внутренней энергии как составляющей полной энергии системы.Она является функцией состояния, в простых системах зависящей от объема (V), давления (p), масс веществ (m i), которые составляют данную систему: . В формулировке, которую дал Каратеодори внутренняя энергия не является характеристической функцией своих независимых переменных.

В более привычных формулировках первого начала термодинамики, например, формулировке Гельмгольца внутренняя энергия системы вводится как физическая характеристика системы. При этом поведение системы определено законом сохранения энергии. Гельмгольц не определяет внутреннюю энергию как функцию конкретных параметров состояния системы:

– изменение внутренней энергии в равновесном процессе, Q – количество теплоты, которое получила система в рассматриваемом процессе, A – работа, которую система совершила.

Единицы измерения внутренней энергии

Основной единицей измерения внутренней энергии в системе СИ является: [U]=Дж

Примеры решения задач

Пример

Задание. Вычислите, на какую величину изменится внутренняя энергия гелия имеющего массу 0,1 кг, если его температура увеличилась на 20С.

Решение. При решении задачи считаем гелий одноатомным идеальным газом, тогда для расчетов можно применить формулу:

Так как мы имеем с одноатомным газом, то , молярную массу () возьмем из таблицы Менделеева ( кг/моль). Масса газа в представленном процессе не изменяется, следовательно, изменение внутренней энергии равно:

Все величины необходимые для вычислений имеются:

Ответ. (Дж)

Пример

Задание. Идеальный газ расширили в соответствии с законом, который изображен графиком на рис.1. от начального объема V 0 . При расширении объем сал равен . Каково приращение внутренней энергии газа в заданном процессе? Коэффициент адиабаты равен .

Их взаимодействия.

Внутренняя энергия входит в баланс энергетических превращений в природе. После открытия внутренней энергии был сформулирован закон сохранения и превращения энергии. Рассмотрим взаимное превращение механической и внутренней энергий. Пусть на свинцовой плите лежит свинцовый шар . Поднимем его вверх и отпустим. Когда мы подняли шар, то сообщили ему потен-циальную энергию. При падении шара она уменьшается, т. к. шар опускается все ниже и ниже. Но с увеличением скорости постепенно увеличивается кинетическая энергия шара. Происходит превращение потенциальной энергии шара в кинетическую. Но вот шар ударился о свинцовую плиту и остановился. И кинетическая, и потенциальная энергии его относительно плиты стали равными нулю. Рассматривая шар и плиту после удара, мы увидим, что их состояние изменилось: шар немного сплющился, и на плите образовалась небольшая вмятина; измерив же их температу-ру , мы обнаружим, что они нагрелись.

Нагрев означает увеличение средней кинетической энергии молекул тела. При деформации из-меняется взаимное расположение частиц тела, поэтому изменяется и их потенциальная энергия.

Таким образом, можно утверждать, что в результате удара шара о плиту происходит превращение механической энергии, которой обладал в начале опыта шар, во внутреннюю энергию тела.

Нетрудно наблюдать и обратный переход внутренней энергии в механическую.

Например, если взять толстостенный стеклянный сосуд и накачать в него воздух через отверстие в пробке, то спустя какое-то время пробка из сосуда вылетит. В этот момент в сосуде образуется туман. Появление тумана означает, что воздух в сосуде стал холоднее и, следовательно, его внут-ренняя энергия уменьшилась. Объясняется это тем, что находившийся в сосуде сжатый воздух, выталкивая пробку (т. е. расширяясь), совершил работу за счет уменьшения своей внутренней энергии. Кинетическая энергия пробки увеличилась за счет внутренней энергии сжатого воздуха.

Таким образом, одним из способов изменения внутренней энергии тела является работа, совершаемая молекулами тела (или другими телами) над данным телом. Способом изменения внут-ренней энергии без совершения работы является теплопередача .

Внутренняя энергия идеального одноатомного газа.

Поскольку молекулы идеального газа не взаимодействуют друг с другом, их потенциальная энергия считается равной нулю. Внутренняя энергия идеального газа определяется только кинетической энергией беспорядочного поступательного движения его молекул. Для ее вычисления нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что k N A = R , получим значение внутренней энергии идеального газа :

.

Внутренняя энергия идеального одноатомного газа прямо пропорциональна его температуре. Если воспользоваться уравнением Клапейрона-Менделеева , то выражение для внутренней энергии идеального газа можно представить в виде:

.

Следует отметить, что, согласно выражению для средней кинетической энергии одного атома и в силу хаотичности движения, на каждое из трех возможных направлений движения, или каждую степень свободы , по оси X , Y и Z приходится одинаковая энергия .

Число степеней свободы — это число возможных независимых направлений движения молекулы.

Газ, каждая молекула которого состоит из двух атомов, называется двухатомным. Каждый атом может двигаться по трем направлениям, поэтому общее число возможных направлений дви-жения — 6. За счет связи между молекулами число степеней свободы уменьшается на одну, по-этому число степеней свободы для двухатомной молекулы равно пяти .

Средняя кинетическая энергия двухатомной молекулы равна . Соответственно внутрен-няя энергия идеального двухатомного газа равна:

.

Формулы для внутренней энергии идеального газа можно обобщить:

.

где i — число степеней свободы молекул газа (i = 3 для одноатомного и i = 5 для двухатомного газа).

Для идеальных газов внутренняя энергия зависит только от одного макроскопического параметра — температуры и не зависит от объема, т. к. потенциальная энергия равна нулю (объем определяет среднее расстояние между молекулами).

Для реальных газов потенциальная энергия не равна нулю. Поэтому внутренняя энергия в тер-модинамике в общем случае однозначно определяется параметрами, характеризующими состоя-ние этих тел: объемом (V) и температурой (T) .